Efficient multi-image deconvolution in astronomy

Roberto Cavicchioli1, Marco Prato1, Luca Zanni1, Patrizia Boccacci2 and Mario Bertero2

1University of Modena and Reggio Emilia, 2University of Genova

Abstract

The deconvolution of astronomical images by the Richardson-Lucy method (RLM) is extended here to the problem of multiple image deconvolution and the reduction of boundary effects. We show the multiple image RLM in its accelerated gradient-version SGP (Scaled Gradient Projection). Numerical simulations indicate that the approach can provide excellent results with a considerable reduction of the boundary effects. Also exploiting GPUlib applied to the IDL code, we obtained a remarkable acceleration of up to two orders of magnitude [Prato et al. 2012].

Multiple image deconvolution problem

Multiple image deconvolution problem with Poisson data:

$$\min_{\mathbf{f}} \left(J(\hat{\mathbf{f}}, \mathbf{g}) \right) = \sum_{j=1}^{p} \left(\frac{\mathbf{M}_0(m) - \mathbf{g}_j(m)}{\mathbf{A}_j \mathbf{f} + \mathbf{b}_j} \right)$$

where:
- $\hat{\mathbf{f}}$ is the unknown object;
- \mathbf{M}_0 are the detected images;
- A_j is the j-th PSF, normalized to unit volume;
- \mathbf{b}_j are the background emissions;
- S is the image domain.

From the standard expectation maximization method [Shepp & Vardi 1982] applied to this problem, we obtain the multiple image RLM method

$$\hat{\mathbf{f}}^{(k+1)} = \mathbf{f}^{(k)} - \frac{1}{p} \sum_{j=1}^{p} A_j \left(\mathbf{M}_0 - \mathbf{g}_j \right)$$

Since

$$\nabla J(\hat{\mathbf{f}}, \mathbf{g}) = \sum_{j=1}^{p} \left\{ \hat{\mathbf{g}}_j - A_j \hat{\mathbf{f}} \right\}$$

algorithm (2) can be seen as a scaled gradient method, with a scaling given, at iteration k, by $\mathbf{f}^{(k)}/p$. Therefore the application of SGP [Bonettini et al. 2009] to this problem is straightforward.

Boundary effect correction

If the target $\hat{\mathbf{f}}$ is not completely contained in the image domain, the previous deconvolution method produce annoying boundary artifacts.

Idea: reconstruct the object $\hat{\mathbf{f}}$ over a broader domain $R \supset S$. If we introduce:
- an array \bar{S} containing R and S and such that Fourier transform in \bar{S} can be computed by FFT;
- the masks \bar{M}_0, defined over \bar{S}, which are 1 over R, S respectively and 0 outside;
- the matrices A_j and A_j^* ($j = 1, \ldots, p$) defined as

$$\begin{align*}
(A_j \hat{\mathbf{f}})(m) &= \bar{M}_0(m) \sum_{m' \in \bar{S}} \bar{K}_j(m - m') \bar{g}_j(m') \\
(A_j^* \hat{\mathbf{f}})(n) &= \bar{M}_0(n) \sum_{n' \in \bar{S}} \bar{K}_j(n - n') \bar{g}_j(n')
\end{align*}$$

where \bar{K}_j, \bar{g}_j ($j = 1, \ldots, p$) have been extended to \bar{S} by zero padding, then $J(\hat{\mathbf{f}}, \mathbf{g})$ is given again by (1), with S replaced by \bar{S}, while its gradient is now given by

$$\nabla J(\hat{\mathbf{f}}, \mathbf{g}) = \sum_{j=1}^{p} \left\{ \hat{\mathbf{g}}_j^* - A_j^* \hat{\mathbf{f}} \right\}$$

The domain R can be defined through the functions

$$\hat{\mathbf{g}}_j^*(n) = (A_j^* \mathbf{f})^*(n), \quad n \in \bar{S}$$

$$\hat{\mathbf{g}}_j^*(n) = (A_j^* \mathbf{f})^*(n), \quad n \notin \bar{S}$$

in the following way:

$$R = \left\{ n \in \bar{S} \mid \hat{\mathbf{g}}_j^*(n) \geq \sigma, j = 1, \ldots, p \right\}$$

where σ is a thresholding value. Then the RL algorithm, with boundary effect correction, is given by

$$\hat{\mathbf{f}}^{(k+1)} = \frac{\bar{M}_0(\mathbf{f})}{\alpha} \sum_{j=1}^{p} A_j^* \left(\hat{\mathbf{g}}_j^* - \hat{\mathbf{f}} \right)$$

the quotient being zero in the pixels outside R.

Numerical results

Comparison between:
- Multiple RLM
- SGP

For testing the accuracy of the deconvolution method with boundary effect correction we apply “inverse crime” on an image of nebula NGC7027. The image is partitioned into 4 partially overlapping sub-images, the methods with boundary effect correction are applied and the final reconstruction is obtained as a mosaic of the four partial reconstructions.

Test setting:
- true object: NGC7027 nebula
- blurring: 3 PSF generated according to LINC-NIRVANA [Herbst et al. 2003] model and with equispaced orientations of the baseline (0°,60°,120°)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>It</th>
<th>Err</th>
<th>Sec</th>
<th>SpUp</th>
<th>AlgSpUp</th>
</tr>
</thead>
<tbody>
<tr>
<td>RL</td>
<td>2899</td>
<td>0.034</td>
<td>13978</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RL_CUDA</td>
<td>2899</td>
<td>0.034</td>
<td>174.2</td>
<td>80.2</td>
<td>-</td>
</tr>
<tr>
<td>SGP</td>
<td>160</td>
<td>0.034</td>
<td>873.3</td>
<td>-</td>
<td>16.0</td>
</tr>
<tr>
<td>SGP_CUDA</td>
<td>160</td>
<td>0.034</td>
<td>15.45</td>
<td>56.5</td>
<td>-</td>
</tr>
</tbody>
</table>

Table: Reconstruction of the Nebula

$\alpha = 10$

Figure: A: Original Nebula, B: its blurred and noisy image in the case $m = 10$ and baseline orientation 0°; C: reconstruction of the global image; D: reconstruction as a mosaic of four reconstructions of partially overlapping sub-domains, using the algorithms with boundary effect correction.

Figure: Simulated PSF of LINC-NIRVANA with SR = 70 % (left panel) and corresponding MTF (right panel)

References