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Abstract

In this work we analyze a number of novel steplength selection rules for iterative proximal-based convex optimization algorithms. Proximal methods
are a very useful tool for addressing the minimization of a function that includes both a differentiable term with Lipschitz continuous gradient
and a non-smooth term. Classical proximal approaches heavily exploit the knowledge of the gradient Lipschitz constant in order to select the
steplength in the updating iteration. Since the value of this constant is not always available, we discuss two possibilities of realizing convergent
proximal methods completely independent on the Lipschitz parameter. Numerical experiments carried out on signal recovering test problems show
the performance of the methods in comparison to existing schemes.

Proposed proximal-type algorithms [1]

We consider the problem of minimizing the sum of two given functions:

min
x∈RN

F(x) ≡ f (x) + g(x) (1) ◮f : RN −→ R is a convex, continuously differentiable function;

◮g : RN −→ R is an extended-value convex function.

Proximal Khobotov-like Method (PKM)

Choose the starting point x0 and the parameters α0 > 0, ρ ∈ (0, 1).

for k = 0, 1, 2, ... do

STEP 1. x̄n = proxαng
(xn − αn∇f (xn))

STEP 2.

if α2
n

‖∇f (xn)−∇f (x̄n)‖
‖xn − x̄n‖

> ρ2

then αn = min

{

αn

2
,
‖∇f (xn)−∇f (x̄n)‖√

2‖xn − x̄n‖

}

, goto STEP 1

else goto STEP 3

endif

STEP 3. xn+1 = proxαng
(xn − αn∇f (x̄n)), αn+1 = αn

end for

•Convergence. Let {xn}n∈N be the sequence generated by
PKM, then {xn}n∈N converges to a minimizer of problem (1).

•Remark. If g is the indicator function of a set, PKM reduces to
the Khobotov extra-gradient method.

•Advantage. It is possible to prove convergence for PKM even
when the proximal operator of g cannot be computed exactly.

Proximal Armijo-like Method (PAM)

Choose the starting point x0 and the parameters α0 > 0, 0 < β, σ < 1.

for k = 0, 1, 2, ... do

STEP 1. x̄n = proxαng
(xn − αn∇f (xn));

dn = x̄n − xn, set λn = 1

STEP 2.

if F(xn + λnxn) < F(xn) + σλn [〈∇f (xn),dn〉 − g(xn) + g(x̄n)]

then goto STEP 3

else
λn = βλn, goto STEP 2

endif

STEP 3. xn+1 = xn + λndn; αn+1 ∈ [αmin, αmax].

end for

•Convergence. Let {xn}n∈N be the sequence generated by PAM, then
every limit point of {xn}n∈N is a stationary point.

•Remark. If g is the indicator function of a set, PAM reduces to the
Armijo gradient projection method.

•Advantage. The convergence of PAM is assured by the backtracking
procedure on λn (STEP 2), therefore it is possible to exploit the choice
of the steplength αn to obtain a better convergence rate.

Poissonian sparse signal recovering

Signal formation process: an inverse problem

y = Hx + b + η

◮y ∈ R
M : observed data; ◮ x ∈ R

N : signal to be recovered;

◮H ∈ R
M×N : measurement matrix; ◮ b ∈ R

M : background;

◮η ∈ R
M : Poisson noise corrupting the data.

Signal restoration: optimization problem

min
x∈RN

KL(x) + µ‖x‖1 + I{x≥0}

◮KL(x) =
∑N

i=1

{

yi ln
yi

(Hx+b)i
+ (Hx + b)i − yi

}

;

◮µ > 0: regularization parameter;

◮ I{x≥0} indicator function of the non-negative orthant

Numerical results: comparison with SPIRAL method [2]

First dataset (N = 105,M = 4× 103) Second dataset (N = 5× 103,M = 103)
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Conclusion. PAM shows very promising results in addressing this type of problems: it

outperforms SPIRAL for the second dataset. PKM convergence rate is very slow, probably due to

the line-search procedure on the steplength.
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