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Abstract

Blind deconvolution is the problem of image deblurring when both the original object and the blur are unknown. In this work, we show a particular
astronomical imaging problem, in which p images of the same astronomical object are acquired and convolved with p different Point Spread
Functions (PSFs). According to the maximum likelihood approach, this becomes a constrained minimization problem with p+1 blocks of variables,
whose objective function is globally non convex. Thanks to the separable structure of the constraints, the problem can be treated by means of
an inexact alternating minimization method whose limit points are stationary for the function [1]. This method has been tested on some realistic
datasets and the numerical results are hereby reported to show its effectiveness on both sparse and diffuse astronomical objects.

Imaging with Large Binocular Telescope

The Fizeau interferometer LINC-NIRVANA [2] of
the Large Binocular Telescope (LBT) detects p dif-
ferent images of the same object, corresponding to
p different rotations of LBT, in order to get the
maximum resolution in all directions.

Each observed image is a vector yj ∈ R
n, yj ∼ Poisson(Kj ∗x+bj)

where j = 1, . . . , p and:

◮x ∈ R
n is the unknown object

◮Kj ∈ R
n is the j−th Point Spread Function (PSF)

◮bj ∈ R
n is the j−th constant background term.

Problem: given (yj, bj), j = 1, . . . , p, find an estimate of the true
object x and the PSFs K1, K2 . . . ,Kp

Maximum likelihood approach: minimize the negative logarithm
of the likelihood function, i.e.

min
x∈Ω, Kj∈Ωj

J0(x,K1, . . . ,Kp;y, b) =

p
∑

j=1

DKL(yj;Kj ∗ x + bj) (1)

◮DKL(yj;Kj ∗ x + bj) =

=

n
∑

i=1

{

yj(i) ln
yj(i)

(Kj ∗ x)(i) + bj(i)
+ (Kj ∗ x)(i) + bj(i)− yj(i)

}

is the generalized Kullback-Leibler divergence

◮Ω = {x ∈ R
n : x ≥ 0,

n
∑

ℓ=1

x(ℓ) = c}

Ωj = {K ∈ R
n : 0 ≤ K ≤ sj,

n
∑

ℓ=1

K(ℓ) = 1}

are the closed, convex, separable constraints, where sj is an upper
bound derived from the Strehl ratio of LBT and c is the average flux
of the p detected images (after background subtraction).

The Cyclic Block Gradient Projection algorithm

Choose the initial guesses x(0),K
(0)
1 , . . . ,K

(0)
p and p+1 positive integers

L0, L1, . . . , Lp.

FOR k = 0, 1, 2, ... the (k + 1)-th iterates are computed as follows:

1. Start from x(k) and compute x(k+1) with L
(k)
0 ≤ L0 SGP

iterations applied to

min
x∈Ω

J0(x,K
(k)
1 , . . . ,K(k)

p ;y, b)

2. For j = 1, . . . , p, start from K
(k)
j and compute K

(k+1)
j

with L
(k)
j ≤ Lj SGP iterations applied to

min
K∈Ωj

J0(x
(k+1),K

(k+1)
1 , . . . ,K

(k+1)
j−1 ,K,K

(k)
j+1, . . . ,K

(k)
p ;y, b)

END

At each step k, we solve inexactly p + 1 subproblems of the form

min
z∈Ω

J(z)

with Ω ⊂ R
n closed and convex and J ∈ C1(Ω), by means of the

scaled gradient projection (SGP) method [3], which generates
a sequence

z(k+1) = z(k) + λkd
(k)

◮d(k) = PΩ,D−1
k
(z(k) − αkDk∇J(z(k)))− z(k) is the feasible descent

direction, where αk ∈ [αmin, αmax] is a scalar step-length parameter,
Dk is a positive definite matrix whose eigenvalues are bounded from
above and below by two constants independent of k and PΩ,D−1

k
is the

projection onto Ω associated with the norm induced by D−1
k

◮λk = θm, with θ ∈ (0, 1) and m being the smallest integer such that
an Armijo-like successive stepsize reduction rule is satisfied for λk.

Every limit point of this sequence is stationary for problem (1).

Numerical results

◮ Initial guesses: x(0) ≥ 0 is a constant image with the average flux

of the background-subtracted images, while K
(0)
j is the

autocorrelation of the corresponding ideal PSF

◮ Inner iterations: 50 SGP iterations on the object and 1 on each
PSF for the Pleiades. No similar rule for the diffuse objects

◮Scaling matrix: Dk = diag(min(C2,max(C1, z
(k)))), where C1 and

C2 are positive constants

◮Step-length: alternation of the two Barzilai-Borwein rules

◮Results: For the Pleaides, the method provides an excellent
reconstruction of both the object and the PSFs.

For the two nebulas, there are sensible improvements with respect to
the single image blind deconvolution approach [4].

Pleiades NGC1952 NGC7027 Reconstructions

Images RMSEobj RMSE
obj
1 RMSE

obj
2 RMSE

psf
1 RMSE

psf
2

Pleiades 0.18% 33.19% 1.89% 44.48% 1.98%

NGC1952 12.43% 15.78% 15.17% 44.48% 30.33%

NGC7027 4.8% 14.89% 11.54% 44.48% 32.45%

RMSE obj (RMSE
obj
1

): SGP with true (initial) PSF RMSE
psf
1

: true PSF vs initial PSF

RMSE
obj
2

: CBGP (best error) RMSE
psf
2

: true PSF vs restored PSF
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