Motivations

Health hazards for patients due to ionizing radiation in Computed tomography (CT) can be reduced by limiting the irradiation to a subregion of the object to be reconstructed, the so-called region-of-interest (ROI) [1].

Goal

Obtaining a stable reconstruction of the ROI without any assumption on the size and location of the ROI and overcoming the ill-posedness of the problem and the instability of naive local reconstruction algorithms.

State of the art

Examples of recoverable regions:
(a) from (at least) one projection view the object is completely recovered;
(b) a known subregion inside the ROI is given;
(c) no assumption on the size and location of the ROI, except for its convex shape.

2D discrete setting

Denoting with \(W \) the \(K P \times N^2 \) forward projection matrix, the data fidelity and consistency equations read as follows:

\[
\text{MWf} = \text{My} = y_0 \quad \text{(data fidelity)}
\]

\[
(\text{IKP} - \text{M})Wf = (\text{IKP} - \text{M})y \quad \text{(data consistency)}
\]

where \(K \) is the number of projection angles, \(P \) is the number of detector elements, \(N \) is the width in pixel of the reconstructed object.

Unfortunately, these equations alone do not lead to a unique solution [3]. A suitable one can be derived using a Tikhonov-like regularization:

\[
\min_{f \in S} \frac{1}{2} \| f - f_0 \|^2 + \frac{\lambda}{2} \| \Phi (f) - y_0 \|^2
\]

where \(\Phi(f) = f + \rho (\text{TV}(f) / f) \) and \(\Phi \) is the shearlet (resp. wavelet) transform [4].

Slight modifications of the objective function can be taken into account, coupling the regularization term with, for instance, a Total Variation term:

\[
\min_{f \in S} \frac{1}{2} \| f - f_0 \|^2 + \rho (\text{TV}(f) / f)
\]

Here, \(\lambda \) and \(\rho \) are regularization parameters, \(\delta \) is the TV smoothing parameter.

Distance-Driven method

Each object pixel (voxel) and detector cell is mapped onto a common axis (plane) by its projected boundary midpoints.

\[
a_h = \frac{\xi_h - \xi_{h-1}}{2}, \quad a_w = \frac{\eta_w - \eta_{w-1}}{2}, \quad a_{h,w} = \frac{\xi_h - \xi_{h-1}}{2} \frac{\eta_w - \eta_{w-1}}{2}
\]

The length of the overlap is used as projection weight [5].

2D problem setting

The aim of ROI CT is to reconstruct an integrable function \(f \) from its Radon projections \(y_0 \) known only within a subregion inside the field of view, while the rest of the image is ignored. This is accomplished by setting:

\[
y_0(\theta, \tau) = M(\theta, \tau) R f(\theta, \tau)
\]

where \(R f(\theta, \tau) = \int \delta(\tau - x \cdot e_\theta) f(x) \, dx \) is the Radon transform of \(f \) at \((\theta, \tau) \) and the mask \(M(\theta, \tau) = 1 \) on \((\theta, \tau) \) identifies the ROI \(S \) in the sinogram space [2].

Given \(y_0 \) defined on \(P(S) \), the goal is to extrapolate it to the region outside \(P(S) \), ensuring that the Radon projections \(y = R f \) comes from the Radon transform of a function \(f \) in \(L^1 \cap L^2 \):

\[
M R f = y_0 \quad \text{(data fidelity)}
\]

\[
(1 - M) R f = (1 - M)y_0 \quad \text{(data consistency)}
\]

Future perspectives

- Investigate sparse reconstruction
- Obtain stable reconstructions from (Poisson) noisy sinograms
- Separable footprint method for system matrix
- Apply the same machinery to helical CT

References

Acknowledgements

T. A. B. is supported by the Young Researchers Fellowship 2014 of the University of Ferrara and by the Italian FIRB2012, grant n. RBFR12M3J4.