A Parallel Approach for Image Segmentation by Numerical Minimization of a Second-Order Functional Riccardo Zanella 1 Federica Porta 1 Massimo Zanetti 2 Valeria Ruggiero 1

¹Mathematics and Computer Science Dept., University of Ferrara ²Information and Comm. Technology Dept., University of Trento

Introduction

In this work we are concerned with Blake-Zissermann[1] (BZ) variational method for image segmentation: this approach leads to a minimization of a non-convex objective energy functional.

Very often, the segmentation of large-size gridded data is addressed via tiling procedure: additional specific post-processing on tile boundaries may be needed in order to reduce the effect of the subdivision.

We aim to show that a simple tiling strategy enables us to treat large images even in a commodity multicore CPU, with no need of specific post-processing on tile junctions.

Blake-Zissermann continuos model

Continuous model can be stated as:

$$\mathcal{F}_{\epsilon}(s,z,u) = \delta \int_{\Omega} z^{2} |\nabla^{2}u|^{2} dx + \xi_{\epsilon} \int_{\Omega} (s^{2} + o_{\epsilon}) |\nabla u|^{2} dx + (\alpha - \beta) \int_{\Omega} (\epsilon |\nabla s|^{2} + \frac{1}{4\epsilon} (s-1)^{2}) dx + \beta \int_{\Omega} (\epsilon |\nabla z|^{2} + \frac{1}{4\epsilon} (z-1)^{2}) dx + \mu \int_{\Omega} |u - g|^{2} dx,$$

where $\Omega \subset \mathbb{R}^2$ is a rectangular domain and $g \in L^\infty(\Omega)$ is a given image. Here $\delta, \alpha, \beta, \mu$ are positive parameters $(2\beta \geq \alpha \geq \beta)$ and the terms depending on ϵ are infinitesimals.

Ambrosio-Faina-March discrete model

In [2] a discrete approximation of BZ functional is proposed; this function is not globally convex, but it is quadratic and strongly convex w.r.t. each block of variables (s, z, u).

when fixing u:

$$F_{\epsilon}(\mathbf{s}, \mathbf{z}, \mathbf{u}) = t_{x} t_{y} \left\{ \frac{1}{2} \begin{pmatrix} \mathbf{s}^{T} \mathbf{z}^{T} \end{pmatrix} \begin{pmatrix} \mathbf{A}_{1} & 0 \\ 0 & \mathbf{A}_{2} \end{pmatrix} \begin{pmatrix} \mathbf{s} \\ \mathbf{z} \end{pmatrix} - (\mathbf{s}^{T} \mathbf{z}^{T}) \begin{pmatrix} \mathbf{b}_{1} \\ \mathbf{b}_{2} \end{pmatrix} + \mathbf{c}_{sz} \right\}$$

where:

 \mathbf{A}_1 , \mathbf{A}_2 depend on \mathbf{u} ;

 \mathbf{b}_1 depends on boundary conditions on \mathbf{s} ;

 \mathbf{b}_2 depends on boundary conditions on \mathbf{z} ;

when fixing s, z:

$$F_{\epsilon}(\mathbf{s}, \mathbf{z}, \mathbf{u}) = t_{x}t_{y}\left\{\frac{1}{2}\mathbf{u}^{T}\mathbf{A}_{3}\mathbf{u} - \mathbf{u}^{T}\mathbf{b}_{3} + \mathbf{c}_{u}\right\}$$

where:

 A_3 depends on s, z,

 \mathbf{b}_3 depends on \mathbf{s}, \mathbf{z} , on boundary conditions on \mathbf{u} , and on measured image \mathbf{g} .

BCDA sequential approach

In [3], the numerical minimization of $F_{\epsilon}(\mathbf{s}, \mathbf{z}, \mathbf{u})$ is obtained by a block coordinate descent algorithm (BCDA). Starting from an initial vector $\mathbf{x}^0 = (\mathbf{s}^0, \mathbf{z}^0, \mathbf{u}^0)$, for each block variable (\mathbf{s}, \mathbf{z}) or \mathbf{u} a descent direction **d** is cyclically determined by few iterations of a preconditioned conjugate gradient (PCG) method applied to the quadratic subproblem; furthermore, a Cauchy step-length along **d** is exploited.

OPARBCDA parallel approach

In view of the local features of F_{ϵ} , a natural way to address its minimization is to split the image into p tiles T_i , j = 1, ..., p, inducing a partition of the variables $\mathbf{s}, \mathbf{z}, \mathbf{u}$ into p blocks $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_p$, with $\mathbf{x}_j \equiv (\mathbf{s}|_{T_i}, \mathbf{z}|_{T_i}, \mathbf{u}|_{T_i}) \in \mathbb{R}^{n_j}$, $\Sigma_{j=1}^p n_j = 3NM$. In order to avoid side effects on the tile junctions, we enlarge each $N_i \times M_i$ tile T_i with an outer frame of ν rows and columns of pixels; more precisely, the whole image is splitted into partially overlapping p tiles S_i of size $(N_i + 2\nu) \times (M_i + 2\nu)$, where ν is the number of overlapping pixels and $S_i \supset T_i$.

Parallel implementation

At each outer iteration, Step 1 consists of a number of independent tasks that can be concurrently solved. Manager/workers pattern ensures run-time distribution of independent tasks among POSIX threads: mutex-protected queues collect both task input and output results: a number C of computational threads (workers) is initialized and put on wait on a shared task queue, while a monitor thread (master) is responsible to extract, for each subproblem j, initial data \mathbf{w}_i^0 from current solution \mathbf{x}^{ℓ} and collect subproblems computed solutions. As regards Step 2.2, OpenMP compiler directive omp parallel for is used for evaluation of $F_{\epsilon}(\overline{\mathbf{y}})$.

OPARBCDA method

Step 1: for j = 1, ..., p

Figure 1: OPARBCDA tiling procedure.

Figure 2: OPARBCDA enlarged tile extraction.

Algorithm 1 OPARBCDA

Step 0: Given \mathbf{x}^0 , the partitions $\{T_1, ..., T_p\}$ and $\{S_1, ..., S_p\}$ of Λ such that $S_i \supset T_i$, $B_i = S_i - T_j$, j = 1, ..., p and $\{\theta_\ell\}$, such that $\underline{\theta} < \theta_\ell \leq \overline{\theta}$, $\ell \geq 0$ and an exit tolerance θ_{outer} , $\ell=0$;

1.1 if $\nabla_{x_{\mathcal{T}_i}} F_{\epsilon}(\mathbf{x}^{\ell}) \neq 0$ then ightharpoonup compute $\mathbf{y}^j = (\mathbf{x}_1^\ell,...,\mathbf{x}_{j-1}^\ell,\overline{\mathbf{x}}_j,\mathbf{x}_{j+1}^\ell,...,\mathbf{x}_p^\ell);$ (a) set $\mathbf{x}_{S_i}^0 = (\mathbf{x}^\ell)|_{S_i}$, k = -1, (b) repeat: k = k + 1; compute $\mathbf{x}_{S_i}^{k+1}$ by a step of BCDA; extract $\mathbf{x}_{T_i}^{k+1}$; set $\overline{\mathbf{x}}_i = \mathbf{x}_{T_i}^{k+1};$ if $f_{\mathbf{x}_{S_i}}(\mathbf{x}_{T_i}^k; \mathbf{x}_{B_i}^0) - f_{\mathbf{x}_{S_i}}(\mathbf{x}_{T_i}^{k+1}; \mathbf{x}_{B_i}^0) < \lambda_{min} \|\mathbf{x}_{T_i}^k - \mathbf{x}_{T_i}^{k+1}\|^2$ then $\overline{\mathbf{x}}_{j} = \mathbf{x}_{T_{i}}^{k}$ exit next j; end until $\|\nabla_{\mathbf{x}_{S_i}}f_{\mathbf{x}_{S_i}}(\mathbf{x}_{S_i}^{k+1})\| \leq \theta_{\ell}\|\mathbf{x}_{S_i}^{k+1} - \mathbf{x}_{S_i}^{\ell}\|$ else

 $\mathbf{y}^j = \mathbf{x}^\ell$; end

Step 2: define the new iterate $\mathbf{x}^{\ell+1}$:

2.1 compute $F_{\epsilon}(\overline{\mathbf{y}})$ where $\overline{\mathbf{y}} = (\overline{\mathbf{x}}_1, \overline{\mathbf{x}}_2, ..., \overline{\mathbf{x}}_p)$

2.2 update $\mathbf{x}^{\ell+1} = \operatorname{argmin}\{F_{\epsilon}(\overline{\mathbf{y}}), F_{\epsilon}(\mathbf{y}^1), ..., F_{\epsilon}(\mathbf{y}^p)\}$.

Step 3: if $(F_{\epsilon}(\mathbf{x}^{\ell}) - F_{\epsilon}(\mathbf{x}^{\ell+1}) \leq \theta_{outer}F_{\epsilon}(\mathbf{x}^{\ell+1})$ then stop; else $\ell = \ell + 1$ and go to Step 1.

Numerical evaluation

We considered a 2020×2020 image and compared the solution $\mathbf{x}^s = (\mathbf{u}^s, \mathbf{s}^s, \mathbf{z}^s)$ obtained by BCDA on the whole dataset and the one $\mathbf{x}^t = (\mathbf{u}^t, \mathbf{s}^t, \mathbf{z}^t)$ computed by OPARBCDA, splitting the image into $t=8\times8$ and $t=16\times16$ tiles. BCDA is stopped when the relative difference of F_{ϵ} at two successive iterates is less than 1e-03, while OPARDCDA exits when the current value of F_{ϵ} is less or equal than the minimum achieved by BCDA. We performed runs with up to 15 workers plus one monitor, while for Step 2 parallelization we set the number of OpenMP threads equal to C+1: this approach would ensure a total number of active threads equal to C+1 at each parallelized step of the algorithm.

	F_{ϵ}	rel.err	ext.	it.	time [s]
ground truth solution	8.693e+07				
BCDA	8.736e+07	5.006e-03			102.4
8×8 tile grid					
OPARBCDA $\nu = 0$	8.732e+07	4.511e-03		7 3	1.9 (C=15)
OPARBCDA $\nu = 4$	8.709e+07	1.929e-03		2 2	5.8 (C=15)
OPARBCDA $\nu=8$	8.708e+07	1.760e-03		2 2	7.9 (C=15)
16 imes16 tile grid					
OPARBCDA $\nu = 0$	8.735e+07	4.858e-03		74 5	2.5 (C=15)
OPARBCDA $\nu = 4$	8.710e+07	1.957e-03		3 1	5.1 (C=15)
OPARBCDA $\nu=8$	8.710e+07	1.955e-03		3 1	7.4 (C=15)

Table 1: Reference BCDA and OPARBCDA comparison.

Figure 3: Computational time for parallel OPARBCDA w.r.t the number C of workers.

Test image available at: www.territorio.provincia.tn.it/portal/server.pt/community/lidar/847/lidar/23954 Test platform consists of a commodity PC equipped with a dual-head Intel(R) Xeon CPU E5-2630 at 2.4 GHz with 256 GB of RAM, running CentOS Linux release 7.2 and Intel compiler 16.0.

Accuracy on tile junctions

Entries of central portions of $|\mathbf{z}^t - \mathbf{z}^*| > 0.01$ with $t = 8 \times 8$, $\nu = 0$ and $\nu = 4$. $\mathsf{OPARBCDA}(\nu = 0)$ OPARBCDA ($\nu = 4$) BCDA nz = 35743

References and Acknowledgements

- [1] A. Blake and A. Zisserman. MIT Press, Cambridge, MA, 1987.
- [2] L. Ambrosio, L. Faina, and R. March.
- SIAM J. Math. Anal., 32:1171-1197, 2001.
- [3] M. Zanetti, V. Ruggiero, and M. Jr. Miranda. Commun. Nonlinear Sci. Numer. Simul., 36:528-548, 2016.

This research was supported by: INDAM-GNCS2016, FIRB2012 grant RBFR12M3AC.