
A Parallel Approach for Image Segmentation by
Numerical Minimization of a Second-Order Functional

Riccardo Zanella 1 Federica Porta 1 Massimo Zanetti 2 Valeria Ruggiero 1

1Mathematics and Computer Science Dept., University of Ferrara 2Information and Comm. Technology Dept., University of Trento

Introduction

In this work we are concerned with Blake–Zissermann[1] (BZ) varia-
tional method for image segmentation: this approach leads to a mini-
mization of a non-convex objective energy functional.
Very often, the segmentation of large-size gridded data is addressed via
tiling procedure: additional specific post-processing on tile boundaries
may be needed in order to reduce the effect of the subdivision.
We aim to show that a simple tiling strategy enables us to treat large
images even in a commodity multicore CPU, with no need of specific
post-processing on tile junctions.

Blake-Zissermann continuos model

Continuous model can be stated as:

Fε(s, z , u) = δ
∫
Ω z2|∇2u|2 dx + ξε

∫
Ω(s2 + oε)|∇u|2dx

+(α− β)
∫
Ω(ε|∇s|2 + 1

4ε(s − 1)2)dx + β
∫
Ω(ε|∇z |2 + 1

4ε(z − 1)2)dx
+µ

∫
Ω |u − g |2 dx ,

where Ω ⊂ R2 is a rectangular domain and g ∈ L∞(Ω) is a given
image. Here δ, α, β, µ are positive parameters (2β ≥ α ≥ β) and the
terms depending on ε are infinitesimals.

Ambrosio-Faina-March discrete model

In [2] a discrete approximation of BZ functional is proposed; this func-
tion is not globally convex, but it is quadratic and strongly convex w.r.t.
each block of variables (s, z,u).
I when fixing u:

Fε(s, z,u) = txty


1
2

(
sT zT) 

A1 0
0 A2




s
z

−
(
sT zT) 

b1
b2

 + csz


where:

A1,A2 depend on u;
b1 depends on boundary conditions on s;
b2 depends on boundary conditions on z;

I when fixing s, z:
Fε(s, z,u) = txty


1
2uTA3 u− uTb3 + cu


where:

A3 depends on s, z,
b3 depends on s, z, on boundary conditions on u, and on measured image g.

BCDA sequential approach

In [3], the numerical minimization of Fε(s, z,u) is obtained by a block
coordinate descent algorithm (BCDA). Starting from an initial vector
x0 = (s0, z0,u0), for each block variable (s, z or u) a descent direction
d is cyclically determined by few iterations of a preconditioned con-
jugate gradient (PCG) method applied to the quadratic subproblem;
furthermore, a Cauchy step–length along d is exploited.

OPARBCDA parallel approach

In view of the local features of Fε, a natural way to address its min-
imization is to split the image into p tiles Tj, j = 1, ..., p, induc-
ing a partition of the variables s, z,u into p blocks x1, x2, ..., xp, with
xj ≡ (s|Tj, z|Tj,u|Tj) ∈ Rnj, ∑p

j=1 nj = 3NM . In order to avoid side
effects on the tile junctions, we enlarge each Nj × Mj tile Tj with
an outer frame of ν rows and columns of pixels; more precisely, the
whole image is splitted into partially overlapping p tiles Sj of size
(Nj + 2ν) × (Mj + 2ν), where ν is the number of overlapping pixels
and Sj ⊃ Tj.

Parallel implementation

At each outer iteration, Step 1 consists of a number of independent
tasks that can be concurrently solved. Manager/workers pattern en-
sures run-time distribution of independent tasks among POSIX threads:
mutex-protected queues collect both task input and output results: a
number C of computational threads (workers) is initialized and put on
wait on a shared task queue, while a monitor thread (master) is respon-
sible to extract, for each subproblem j , initial data w0

j from current so-
lution x` and collect subproblems computed solutions. As regards Step
2.2, OpenMP compiler directive omp parallel for is used for evaluation
of Fε(y).

OPARBCDA method

Ω

Tj

Figure 1: OPARBCDA tiling
procedure.

Ω

Sj

Figure 2: OPARBCDA
enlarged tile extraction.

Algorithm 1 OPARBCDA
Step 0: Given x0, the partitions {T1, ...,Tp} and {S1, ..., Sp}

of Λ such that Sj ⊃ Tj, Bj = Sj − Tj, j = 1, ..., p and
{θ`}, such that θ < θ` ≤ θ, ` ≥ 0 and an exit tolerance
θouter , ` = 0;

Step 1: for j = 1, ..., p
1.1 if ∇xTj

Fε(x`) 6= 0 then
I compute yj = (x`1, ..., x`j−1, xj, x`j+1, ..., x`p);
(a) set x0

Sj
= (x`)|Sj , k = −1,

(b) repeat:
k = k + 1; compute xk+1

Sj
by a step of BCDA; extract xk+1

Tj
; set

xj = xk+1
Tj

;
if fxSj

(xk
Tj

; x0
Bj

)− fxSj
(xk+1

Tj
; x0

Bj
) < λmin‖xk

Tj
− xk+1

Tj
‖2 then

xj = xk
Tj

exit next j ; end
until ‖∇xSj

fxSj
(xk+1

Sj
)‖ ≤ θ`‖xk+1

Sj
− x`Sj

‖

else
I yj = x`;
end

Step 2: define the new iterate x`+1:
2.1 compute Fε(y) where y = (x1, x2, ..., xp)
2.2 update x`+1 = argmin{Fε(y), Fε(y1), ..., Fε(yp)}.

Step 3: if (Fε(x`)− Fε(x`+1) ≤ θouterFε(x`+1) then stop;
else ` = ` + 1 and go to Step 1.

Numerical evaluation

We considered a 2020×2020 image and compared the solution xs = (us, ss, zs) obtained
by BCDA on the whole dataset and the one xt = (ut, st, zt) computed by OPARBCDA,
splitting the image into t=8×8 and t=16×16 tiles. BCDA is stopped when the relative
difference of Fε at two successive iterates is less than 1e-03, while OPARDCDA exits
when the current value of Fε is less or equal than the minimum achieved by BCDA. We
performed runs with up to 15 workers plus one monitor, while for Step 2 parallelization
we set the number of OpenMP threads equal to C+1: this approach would ensure a
total number of active threads equal to C+1 at each parallelized step of the algorithm.

Fε rel.err ext. it. time [s]
ground truth solution 8.693e+07
BCDA 8.736e+07 5.006e-03 102.4

8× 8 tile grid
OPARBCDA ν = 0 8.732e+07 4.511e-03 7 31.9 (C=15)
OPARBCDA ν = 4 8.709e+07 1.929e-03 2 25.8 (C=15)
OPARBCDA ν = 8 8.708e+07 1.760e-03 2 27.9 (C=15)

16× 16 tile grid
OPARBCDA ν = 0 8.735e+07 4.858e-03 74 52.5 (C=15)
OPARBCDA ν = 4 8.710e+07 1.957e-03 3 15.1 (C=15)
OPARBCDA ν = 8 8.710e+07 1.955e-03 3 17.4 (C=15)

Table 1: Reference BCDA and OPARBCDA comparison.
1 2 4 6 8 10 12 14 15

workers (C)

0

50

100

150

200

250

300

ti
m

e
 [

s
]

serial
t=8×8 ν=0

t=8×8 ν=4

t=8×8 ν=8

t=16×16 ν=0

t=16×16 ν=4
t=16×16 ν=8

Figure 3: Computational time for parallel
OPARBCDA w.r.t the number C of workers.

Test image available at: www.territorio.provincia.tn.it/portal/server.pt/community/lidar/847/lidar/23954
Test platform consists of a commodity PC equipped with a dual-head Intel(R) Xeon CPU E5-2630 at 2.4 GHz with 256 GB
of RAM, running CentOS Linux release 7.2 and Intel compiler 16.0.

Accuracy on tile junctions

Entries of central portions of |zt − z∗| > 0.01 with t =8×8, ν = 0 and ν = 4.
BCDA OPARBCDA(ν = 0) OPARBCDA (ν = 4)

507 760 1013 1265 1517

nz = 60506

507

760

1013

1265

1517

507 760 1013 1265 1517

nz = 39864

507

760

1013

1265

1517

507 760 1013 1265 1517

nz = 35743

507

760

1013

1265

1517

References and Acknowledgements

[1] A. Blake and A. Zisserman.
MIT Press, Cambridge, MA, 1987.

[2] L. Ambrosio, L. Faina, and R. March.

SIAM J. Math. Anal., 32:1171–1197, 2001.
[3] M. Zanetti, V. Ruggiero, and M. Jr. Miranda.

Commun. Nonlinear Sci. Numer. Simul., 36:528–548,
2016.

This research was supported by: INDAM-GNCS2016, FIRB2012 grant RBFR12M3AC.

Riccardo Zanella (riccardo.zanella@unife.it) Mathematics and Computer Science Dept., University of Ferrara

mailto:riccardo.zanella@unife.it

