In this work we are concerned with Blake–Zissermann [1] (BZ) variational method for image segmentation: this approach leads to a minimization of a non-convex objective energy functional. Very often, the segmentation of large-size gridded data is addressed via tiling procedure: additional specific post-processing on tile boundaries may be needed in order to reduce the effect of the subdivision. We aim to show that a simple tiling strategy enables us to treat large images even in a commodity multicore CPU, with no need of specific post-processing on tile junctions.

Blake–Zissermann continuous model

Continuous model can be stated as:

\[F(x, z, u) = \frac{\beta}{2} \| \nabla u \|^2 + \frac{\alpha}{2} \| z \|^2 + \frac{\nu}{2} \| \nabla (\nabla u - \nabla z) \|^2 + \omega (u - g)^2 \]

where \(\Omega \subset \mathbb{R}^2 \) is a rectangular domain and \(g \in L^\infty(\Omega) \) is a given image. Here \(\alpha, \beta, \nu \) are positive parameters (\(2\beta \geq \alpha \geq \beta \)) and the terms depending on \(\epsilon \) are infinitesimals.

Ambrosio-Faina-March discrete model

In [2] a discrete approximation of BZ functional is proposed; this functional method for image segmentation: this approach leads to a minimization of a non-convex objective energy functional.

OPARBCDA method

Algorithm 1 OPARBCDA

1. **Step 0**: Given \(x^0 \), the partitions \(\{ T_1, \ldots, T_p \} \) and \(\{ S_1, \ldots, S_p \} \) of \(\Omega \) such that \(S_j \cap T_j = \emptyset, j = 1, \ldots, p \) and \(\{ \theta_i \} \), such that \(\theta_i < \theta_j \leq \theta_j + \kappa, \kappa > 0 \) and an exit tolerance \(\theta_{exit}, \kappa \geq 0 \).

2. **Step 1**: for \(j = 1, \ldots, p \)

 - if \(\nabla_{\gamma_j} F(x^j) \neq 0 \) then
 - compute \(y^j = (x^j, z^j, x^j, \ldots, x^j) \):
 - (a) set \(z^{j+1} = z^j + \kappa \cdot \nabla_{\gamma_j} F(x^j) \),
 - (b) repeat:
 - \(k = k + 1 \), compute \(x^{j+1}_k \) by a step of BCDCA; extract \(x^{j+1}_k \),
 - \(x^{j+1}_k - x^j \neq 0 \),
 - \(x^{j+1}_k = x^j \),
 - until \(\| \nabla_{\gamma_j} F(x^j) \| \leq \theta_{exit} \|
 - \(\gamma^j \),
 - else end

3. **Step 2**: define the new iterate \(x^{j+1} \):

 - 2.1 compute \(F_j(y) \) where \(y = (x_1, x_2, \ldots, x_p) \)
 - 2.2 update \(x^{j+1} = \text{argmin}_y \{ F_j(y)^2 \} \)

In this work we are concerned with Blake–Zissermann [1] (BZ) variational method for image segmentation: this approach leads to a minimization of a non-convex objective energy functional. Very often, the segmentation of large-size gridded data is addressed via tiling procedure: additional specific post-processing on tile boundaries may be needed in order to reduce the effect of the subdivision. We aim to show that a simple tiling strategy enables us to treat large images even in a commodity multicore CPU, with no need of specific post-processing on tile junctions.

BCDA sequential approach

In [2] a discrete approximation of BZ functional is proposed; this functional is not globally convex, but it is quadratic and strongly convex w.r.t. each block of variables \((s, z, u) \).

- when fixing \(u \):
 \[
 F_k(s, z, u) = -\ell \cdot \frac{1}{2} \| s \|^2 + \| z \|^{2} - \frac{\nu}{2} \| \nabla (\nabla u - \nabla z) \|^{2} + \omega \| u - g \|^{2},
 \]

- when fixing \(s, z \):
 \[
 F_k(s, u, z) = -\ell \cdot \frac{1}{2} \| s \|^2 + \| z \|^2 - \frac{\nu}{2} \| \nabla (\nabla u - \nabla z) \|^2 + \omega \| u - g \|^2.
 \]

OPARBCDA parallel approach

In view of the local features of \(F(s, z, u) \), a natural way to address its minimization is to split the image into \(p \) tiles \(T_j, j = 1, \ldots, p \), inducing a partition of the variables \(s, z, u \) into \(p \) blocks \(x_1, x_2, \ldots, x_p \), with \(x_j = (s_j, z_j, u_j) \), \(j = 1, \ldots, p \). In order to avoid side effects on the tile junctions, we enlarge each \(T_j \) of size \(T_j \times (\lambda T_j + 2\sigma) \), where \(\lambda \) is the number of overlapping pixels and \(\sigma = 3\sigma \) (\(\lambda \approx 2 \)).

Parallel implementation

At each outer iteration, Step 1 consists of a number of independent tasks that can be concurrently solved. Mapper/workers pattern encourages run-time distribution of independent tasks among POSIX threads: mutex-protected queues collect both task input and output results: a number \(C \) of computational threads (workers) is initialized and put on wait on a shared task queue, while a monitor thread (master) is responsible to extract, for each subproblem \(j \), initial data \(w_j \) from current solution \(x^j \) and collect subproblems computed solutions. As regards Step 2.2, OpenMP compiler directive omp parallel for is used for evaluation of \(F_j(\gamma) \).

Numerical evaluation

We considered a 2020 × 2020 image and compared the solution \(x^* = (u^*, s^*, z^*) \) obtained by BCDA on the whole dataset and the one \(x^* = (u^*, s^*, z^*) \) computed by OPARBCDA, splitting the image into 8 × 8 and 16 × 16 tiles. BCDA is stopped when the relative difference of \(F \) at two successive iterates is less than 1e-03, while OPARBCDA exits when the current value of \(F \) is less or equal than the minimum achieved by BCDA. We performed runs with up to 15 workers plus one monitor, while for Step 2 parallelization we set the number of OpenMP threads equal to \(C+1 \): this approach would ensure a total number of active threads equal to \(C+1 \) at each parallelized step of the algorithm.

Accuracy on tile junctions

Entries of central portions of \(|z^j - z^{j'}| > 0.01 \) with \(t = 8 \times 8, \nu = 0 \) and \(\nu = 4 \).

OPARBCDA parallel approach

In view of the local features of \(F(s, z, u) \), a natural way to address its minimization is to split the image into \(p \) tiles \(T_j, j = 1, \ldots, p \), inducing a partition of the variables \(s, z, u \) into \(p \) blocks \(x_1, x_2, \ldots, x_p \), with \(x_j = (s_j, z_j, u_j) \), \(j = 1, \ldots, p \). In order to avoid side effects on the tile junctions, we enlarge each \(T_j \) of size \(T_j \times (\lambda T_j + 2\sigma) \), where \(\lambda \) is the number of overlapping pixels and \(\sigma = 3\sigma \) (\(\lambda \approx 2 \)).

Parallel implementation

At each outer iteration, Step 1 consists of a number of independent tasks that can be concurrently solved. Mapper/workers pattern ensures run-time distribution of independent tasks among POSIX threads: mutex-protected queues collect both task input and output results: a number \(C \) of computational threads (workers) is initialized and put on wait on a shared task queue, while a monitor thread (master) is responsible to extract, for each subproblem \(j \), initial data \(w_j \) from current solution \(x^j \) and collect subproblems computed solutions. As regards Step 2.2, OpenMP compiler directive omp parallel for is used for evaluation of \(F_j(\gamma) \).

References and Acknowledgements

This research was supported by: INDAM-GNCS2016, FIRB2012 grant RBFR13UMAC.