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Abstract
In the framework of gradient projection-based approaches, steplength selection techniques are very crucial

for the effectiveness of the method. In the context of constrained optimization, we propose modified versions of
the well-known Barzilai-Borwein rules (and their extensions), highlighting their feature of capturing second-order
information in a low cost way, as in the unconstrained case ([3]). The practical effectiveness of the proposed strate-
gies has been tested on random large scale box-constrained quadratic problems, on some well-known non quadratic
problems, and on image deblurring applications.

Mathematical Framework
Let consider the following box-constrained quadratic programming (BQP) problem

min
`≤x≤u

f (x) ≡ 1

2
xTAx− bTx + c (1)

where A ∈ Rn×n is symmetric positive definite, b ∈ Rn and c ∈ R.
Let denote g(x) ≡ ∇f (x) = Ax− b. We solve problem (1) by means of the gradient projection (GP)
algorithm combined with a line-search strategy along the feasible direction. The main step of the GP
method are described in Algorithm 1.

Initialization: choose x(0) ∈ Rn, ` ≤ x(0) ≤ u, δ, σ ∈ (0, 1), M ∈ N, 0 < αmin ≤ αmax,
α0 ∈ [αmin, αmax];
for k = 0, 1, . . . do

d(k) = P`≤x≤u
(
x(k) − αkg(x(k))

)
− x(k) ; // gradient projection step

λk = 1; fref = max{f (xk−i), 0 ≤ i ≤ min(k,M)};
while f (x(k) + λkd

(k)) > fref + σλkg(x
(k))Td(k) do

λk = δλk ; // backtracking step
end
x(k+1) = x(k) + λkd

(k);
define the steplength αk+1 ∈ [αmin, αmax] ; // steplength updating rule

end

Algorithm 1: GP method for box-constrained quadratic programs

Steplength selection strategies
Unconstrained case. The standard Barzilai-Borwein (BB) rules [1] are obtained by imposing

αBB1
k = arg min

α

∥∥∥α−1s(k−1) − y(k−1)∥∥∥ or αBB2
k = arg min

α

∥∥∥s(k−1) − αy(k−1)∥∥∥ (2)

where s(k−1) = x(k) − x(k−1) and y(k−1) = g(x(k))− g(x(k−1)). From (2) we have:

αBB1
k =

‖sk−1‖2

(sk−1)Tyk−1
, αBB2

k =
(sk−1)Tyk−1

‖yk−1‖2
. (3)

Some well-known improvements of the BB rules are the strategies Alternate Barzilai-Borwein (ABB)
[2] and its modification ABBmin [4].
Box-constrained case: modified steplengths rules.
Let be J =

{
i | (x(k−1)i = `i ∧ g

(k−1)
i ≥ 0) ∨ (x

(k−1)
i = ui ∧ g

(k−1)
i ≤ 0)

}
and I = {1, ..., n} − J ;

the problem related to BB1 rule can be formulated as

min
α

∥∥∥α−1s(k−1)J − y(k−1)J

∥∥∥2 + ∥∥∥α−1s(k−1)I − y(k−1)I

∥∥∥2 .
Since s(k−1)J = 0, only the term

∥∥∥α−1s(k−1)I − y(k−1)I

∥∥∥2 affects the BB1 rule, so the effective com-
puted value is:

αBB1
k =

‖sk−1I ‖2

(sk−1I )Tyk−1I
(4)

A similar argument on the BB2 steplength leads to the following formula

αBB2
k =

(sk−1I )Tyk−1I
‖yk−1I ‖2 + ‖yk−1J ‖2

. (5)

Let denote by AI,I the submatrix of A defined by the rows and columns with indices in I, which we
call reduced Hessian matrix at the (k− 1)-th iteration. As proved in Theorem 1, 1/αBB1

k (4) belongs
to the spectrum ofAI,I , whereas 1/αBB2

k (5) might be outside of the spectrum of the reduced Hessian
at x(k−1). We propose to correct the computed BB2 value as follows:

αMBB2
k =

(s
(k−1)
I )Ty

(k−1)
I

‖y(k−1)I ‖2
(6)

Figure 1: BQP test problem of size n = 1000. Behaviour of 1
αk

with respect to the iterations of GP equipped with BB1
rule (left), BB2 rule (central) and MBB2 rule (right); here a nonmonotone line search is used.
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The next theorem states that steplengths (4)-(6) are the reciprocal of the Rayleigh quotients of AI,I .

Theorem 1

If A in (1) is a symmetric positive definite matrix, we have

λmin(AI,I) ≤ 1/αBB1
k ≤ λmax(AI,I).

λmin(AI,I) ≤ 1/αMBB2
k ≤ λmax(AI,I).

As a consequence of the previous results, we can consider a modified ABBmin scheme consisting in
the alternation between BB1 and MBB2:

αMABBmin

k =

min
(
αMBB2
j , j = max(1, k −ma, ..., k)

)
, if α

MBB2
k

αBB1
k

< τ

αBB1
k otherwise

(7)

where ma is a nonnegative integer and τ ∈ (0, 1).

Application to image deblurring

Data affected by Gaussian noise
The test problems are generated by convolving the original 256 × 256 images (named
Nebula, and Spacecraft) with a point spread function (simulated ground-based telescope
http://www.mathcs.emory.edu/ nagy/RestoreTools/index.html), and perturbing the results with addi-
tive white Gaussian noise with variance 1 and zero background radiation [5]. The corresponding
constrained minimization problem is a least squares problem with non negative constraints of the
form:

min
x≥0

1

2
‖Ax− y‖

where y ∈ Rn2 is the non-negative observed data, A ∈ Rn2×n2 is the imaging matrix, and x ∈ Rn2

is the image to recover. Hereafter, we denote by RRE the relative reconstruction error, and by Ad-
ABBmin and Ad-MABBmin, respectively, the alternate approaches where the threshold τ is variable
instead of being a constant parameter.

Detected image Detected image

Reconstruction Reconstruction

Method Nebula Spacecraft
It. Time (s) RRE It. Time (s) RRE

ISRA 1903 72.28 0.074 2500 91.78 0.310
BB1 145 6.76 0.080 635 21.84 0.276
BB2 203 8.30 0.080 1048 32.86 0.276
MBB2 194 7.98 0.080 685 22.76 0.276
Ad-ABBmin 142 6.03 0.080 1853 56.25 0.276
Ad-MABBmin 137 4.48 0.080 1262 37.48 0.276

Table 1: First row panels: noisy and blurred images of Nebula (left), and Spacecraft (right). Second row panels: Nebula
image recovered by GP method equipped with Ad-MABBmin rule corresponding to the minimum RRE (left), Spacecraft
image recovered by GP method equipped with MBB2 rule corresponding to the minimum RRE (right). Table: minimum
RRE achieved by each algorithm, with the correspondings required number of iterations and execution time.

Data affected by Poisson noise
We considered three images of different size: a confocal microscopy phantom (Micro) [6], a space-
craft image (Spaceraft), and a microscopy phantom (Tubule) representing a micro-tubule network
inside the cell, considered in [5]. The blurred and noisy images are obtained by convolving the orig-
inal images with the point spread function described before, and by perturbing the result of the con-
volution with Poisson noise. Due to its features, the problem can be formulated as the minimization
of a Kullback-Leibler divergence with a regularization term consisting in a smooth approximation of
the total variation:

min
x≥0

n2∑
i=1

{
yi log

yi
(Ax + b)i

+ (Ax + b)i − yi
}
+ β

n∑
i,j=1

√
((Dx)i,j)21 + ((Dx)i,j)22 + δ2

where b ∈ Rn2 is a known background radiation, (Ax + b)i > 0 ∀i = 1, . . . , n2, β, δ > 0, and
D : Rn2 → Rn2 is a discrete gradient operator, set through the standard finite difference scheme with
periodic boundary conditions.

Detected image Reconstruction

Image n Rule It. Time (s) RRE

Micro 128
ABBmin 410 1.74 0.092

MABBmin 370 1.54 0.091

Spacecraft 256
ABBmin 917 12.74 0.379

MABBmin 666 9.56 0.375

Tubule 512
ABBmin 1472 246.10 0.575

MABBmin 876 151.29 0.575

Table 2: Left: noisy and blurred Tubule image. Center: Tubule image recovered by GP method equipped with MABBmin

rule. Right: table reporting the RRE achieved by each algorithm, with the correspondings required number of iterations
and execution time.

Forthcoming Research
X Generalization of the strategy to other feasible regions
X Steplengths selection rule based on Ritz-like values for constrained problems
X Analysis of the behaviour of modified steplength rules in presence of a variable metric

References
[1] J. Barzilai and J. M. Borwein. Two-point step size gradient methods. IMA J. Numer. Anal., 8:141–

148, 1988.

[2] Y. H. Dai and Y. Yuan. Alternate minimization gradient method. IMA J. Numer. Anal., 23:377–
393, 2003.

[3] D. di Serafino, V. Ruggiero, G. Toraldo, and L. Zanni. On the steplength selection in gradient
methods for unconstrained optimization. Appl. Math. Comput., 318:176–195, 2018.

[4] G. Frassoldati, L. Zanni, and G. Zanghirati. New adaptive stepsize selections in gradient methods.
J. Ind. Manag. Optim., 4(2):299–312, 2008.

[5] F. Porta, M. Prato, and L. Zanni. A new steplength selection for scaled gradient methods with
application to image deblurring. J. Sci. Comp., 65:895–919, 2015.

[6] R. M. Willett and R. D. Nowak. Platelets: a multiscale approach for recovering edges and surfaces
in photon limited medical imaging. IEEE Trans. Med. Imaging, 22:332–50, 2003.


