# **Reconstruction of solar flare images using interpolated visibilities**

Marco Prato<sup>1,2</sup>, Anna Maria Massone<sup>2</sup>, Michele Piana<sup>2,3</sup>, A.Gordon Emslie<sup>4</sup>, Gordon J. Hurford<sup>5</sup>

Dipartimento di Matematica, Università di Modena e Reggio Emilia, Italy
 CNR – INFM LAMIA, Genova, Italy

3. Dipartimento di Informatica, Università di Verona, Italy

4. Department of Physics, Oklahoma State University, US

5. Space Sciences Laboratory, University of California, Berkeley, US



## Objective

One possibility to create images of high energy X-rays and γ-rays is the use of a set of Rotational Modulation Collimators (RMCs). The combined effect of the collimators' grids and the hardware rotation is a set of spatial Fourier components, called visibilities, sampled on spatial frequencies distributed over concentric circles. We introduce a fast and reliable method for X-ray imaging by applying an inverse FFT code to interpolated visibilities. We also show that super-resolution effects can be obtained by utilizing a projected iterative algorithm.

## **RHESSI and visibilities**

The Reuven Ramaty High Energy Solar Spectroscopic Imager (*RHESSI*) [1], launched by NASA on February 2002, produces images with the finest angular and spectral resolution ever achieved at hard X-ray and  $\gamma$ -ray energies. Such **imaging spectroscopy** provides a powerful tool with which to explore the underlying physics of particle acceleration and transport in solar flares.



## Visibility-based imaging methods



RHESSI encodes spatial information through the<br/>temporal modulation of photon flux by a set of<br/>nine Rotating Modulation Collimators (RMCs)0.3<br/>0.2[2]. This information is rather straightforwardly<br/>converted to photon visibilities, which are 2D<br/>spatial Fourier components corresponding to<br/>spatial frequencies (u,v) lying on nine concentric<br/>circles.0.3<br/>0.2<br/>0.1<br/>0.0<br/>0.0<br/>0.1<br/>0.0<br/>0.1<br/>0.0<br/>0.1<br/>0.0<br/>0.1<br/>0.0<br/>0.1<br/>0.1<br/>0.0<br/>0.1<br/>0.0<br/>0.1<br/>0.0<br/>0.1<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<br/>0.0<b



Visibilities advantages:

- full calibration: no remaining instrument dependence
- well determined statistical errors (visibilities are linear combinations of measured counts)
- background automatically removed
- indication of systematic errors provided by redundancy
- Fourier-based imaging possible, e.g.:
  - **back-projection** (direct Fourier inversion of the measured visibilities). Drawbacks: significant sidelobes, limited usefulness;
  - Maximum Entropy Method (MEM) [3].

Drawbacks: application not always successful in these circumstances;

- Forward Fit (best fit of parametrized simple functional forms).

Drawbacks: applicability limited to sources whose morphology matches predetermined functional form.

# uv - smooth

Here we fill a need by introducing a robust, widely-applicable algorithm for reconstructing RHESSI visibility-based data. It proceeds by smoothing the observed visibilities in the spatial frequency plane prior to Fourier inversion. For this reason we called this method **uv – smooth** [4]. The algorithm consists of a two-step process: 1. **interpolation** to generate a smooth continuum of visibilities within the disk in the (u,v) plane spanned by the available data; 2. the imposition of image **positivity** through a Fast Fourier Transform (FFT)-based iterative method.

#### Interpolation

#### FFT + positivity constraint

*Idea*: use the 2D FFT algorithm to get the image in a fast and natural way. *Problem*: if the data are sampled sparsely and not uniformly in the (u,v) plane, as occurs with *RHESSI* visibilities, 2D FFT is not applicable. *Solution*: interpolate and re-sample the visibility set.

#### Improvements:

• information also for spatial frequancies **inside** the nine circles (which, in principle, corresponds to "virtual" subcollimators with angular resolution between the minimum and the maximum values available with *RHESSI*'s hardware) are achieved;

• with the new (uniform) re-sampling on the visibilities in the (u,v) plane, the 2D FFT routine can be applied.

The interpolation step is performed through a thin-plate spline algorithm.





*Idea*: extract information also for frequencies **outside** the nine circles to get a super-resolution effect of the reconstructed images. *Problem*: find the function I such that

 $V(u,v) = \chi_B(u,v)(\mathcal{F}I)(u,v)$ 

where B is the band in which RHESSI provides the visibilities and  $\chi_B$  is the characteristic function of B.

*Solution*: Gerchberg-Papoulis method [5,6] with positivity constraint:

1. put  $I^{(0)}$  equal to the null map;

- 2. for k=0,1,...
  - (a) calculate the Fourier Transform FI<sup>(k)</sup> of I<sup>(k)</sup>;
     (b) calculate

 $\mathcal{F}I^{(k+1)}(u,v) = \mathcal{F}I^{(k+1)}(u,v) + \tau(V(u,v) - \chi_B(u,v)(\mathcal{F}I)(u,v))$ 

(c) calculate the Inverse Fourier Transform I<sup>(k+1)</sup> of FI<sup>(k+1)</sup>;
(d) project I<sup>(k+1)</sup> on the set of the real positive numbers;
(e) stopping rule: if satisfied, I<sup>(k+1)</sup> is the desired approximation. Else, go back to step 2.

The steplength parameter  $\tau$  has to be properly choosen in order to assure the convergence of the algorithm.

## **Application to real events**



### References

[1] Lin R.P. et al. 2002, "The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI)", Sol Phys 210, 3-32.
[2] Hurford G.J. et al. 2002, "The RHESSI imaging concept", Sol Phys 210, 61-86.
[3] Bong et al. 2006, "Spatio-spectral maximum entropy method I: Formulation and test", Astrophys J 636, 1159-1165.

[4] Massone A.M. et al., "Hard X-ray images of solar flares using interpolated visibilities", to appear on Astrophys J.
[5] Gerchberg R.W. 1974, "Super-resolution through error energy reduction", Optica Acta 21, 709-720.
[6] Papoulis A. 1975, "A new algorithm in spectral analysis and band-limited extrapolation", IEEE T Circuits Syst 22, 735-742.