Image Reconstruction from Nonuniform Fourier Data
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Abstract

In many scientific frameworks (e.g., radio and high energy astronomy, medical imaging) the data at one's disposal are encoded in the form of sparse
and nonuniform samples of the desired unknown object's Fourier Transform. This work aims at reconstructing the object’s image by acting straightly
on the data without interpolation and re-sampling operations, which might affect the reconstruction’s quality. In particular, we show that the
minimization of the data discrepancy is equivalent to a deconvolution problem with a suitable kernel and we address its solution by means of a
gradient projection method with an adaptive steplength parameter. Since the gradient of the objective function involves a convolution operator, the
algorithm can be effectively implemented exploiting the Fast Fourier Transform. Further information can be found in [1].
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Discretization:
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(fast calculation through FFT)
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Let C be the set of all nonnegative images.
Choose the starting point (9 € C, set the parameters
6,6’ - (O, 1), 0 < amin < Cmaz-

For £k =0,1,2,... DO THE FOLLOWING STEPS:

STEP 1. Choose the parameter ag € |Qmin, Qmax|-
STEP 2. Projection: y'*) = Po(f%) — o, VJ(fF))).
STEP 3. Descent direction: d(¥) = y(k) — (&)
STEP 4. Set A\ = 1.
STEP 5. Backtracking loop:
let Jhew = J(fF) 4+ Apd®);
IF Jpew <= J(f*) + BNV I(fE)Td*) THEN
o0 to Step 6;
KLSE

set A\, = 60\, and go to Step 5.
ENDIF

STEP 6. Set fF+1) = (k) 1 N\, d*).

END
Adaptive alternation of the Barzilai — Borwein rules [2,3]
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IF oz,i )/a <= T THEN

. = min {0452), j =max{l,k— M,},..., k}; Trt1 = T * 0.9;
ELSE
X — Oél(ﬂl); Tk4+1 — Tk * 1.1;

ENDIF (My € Zy, 11 € (0,1))

Numerical tests: the RHESSI mission

Algorithms availa

e uv-smooth [6]:

* MEM [7]: interpolation + resampling + maximum entropy methoc

acceleration and transport in solar flares.

Imaging from visibilities
ble in RHESSI Solar SoftWare (SSW):

interpolation + resampling + projected Gerchberg-Papoulis method

* back projection, forward fit

Simulated datasets creation

* select a real dataset and reconstruct the related image with a method at will

* clean the image from artifacts (by zeroing all the pixels lower than a fixed threshold)
* Fourier Transform the resulting image to get the “perfect” visibilities
e corrupt the visibilities with realistic noise

The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) [4], launched by NASA on February 2002,  ospmmrr
produces images with the finest angular and spectral resolution ever achieved at hard X-ray and y-ray energies. R
Such imaging spectroscopy provides a powerful tool with which to explore the underlying physics of particle

RHESSI encodes spatial information through the temporal modulation of photon flux by a set of nine Rotating @2 o 5
Modulation Collimators (RMCs) [5]. This information is rather straightforwardly converted to visibilities, which o2k 5
are 2D spatial Fourier components corresponding to spatial frequencies (u,v) lying on nine concentric circles.
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