A cyclic block coordinate gradient projection algorithm

Silvia Bonettini, Dipartimento di Matematica, Università di Ferrara

Motivation: Many real life problems can be modeled as smooth, large scale optimization problems whose variable is constrained in a cartesian product of convex sets.

min f(x)s.t. $x \in \Omega = \Omega_1 \times \Omega_2 \times ... \times \Omega_m \subseteq \mathbb{R}^n$

 $x = (x_1, x_2, \dots, x_m) \quad x_i \in \Omega_i$

Basic idea: Decouple the optimization problem by cycling over the blocks

Nonlinear Gauss-Seidel method

Drawbacks of the nonlinear GS method:

no convergence for m>2 without strict convexity assumptions;

exact solution of a constrained minimization problem required at each partial iteration

Recent developments:

convergence result for m=2 in the nonconvex, constrained case [5]

globally convergent line-search based schemes for the unconstrained case [4]

$$x_i^{(k+1)} = \arg\min_{y \in \Omega_i} f(x_1^{(k+1)}, \dots, x_{i-1}^{(k+1)}, y, x_{i+1}^{(k)}, \dots, x_m^{(k)})$$

Proposed approach: a descent method based on the projected gradient properties.

The Cyclic Block Gradient Projection (CBGP) method

Choose the starting point $x^{(0)} \in \Omega$ and a positive integer L

For k = 0, 1, 2, ...

For i = 1, ..., m

Choose the inner iterations number $\ell_i^{(k)} \leqslant L$

• Apply $\ell_i^{(k)}$ SGP iterations to the problem

 $\min_{y \in \Omega_i} J_i(y) \equiv f(x_1^{(k+1)}, \dots, x_{i-1}^{(k+1)}, y, x_{i+1}^{(k)}, \dots, x_m^{(k)})$ to compute $x_i^{(k+1)}$

The Scaled Gradient Projection (SGP) method

 $\min_{y\in\mathscr{Y}}J(y)$

Choose the starting point $y^{(0)} \in \mathscr{Y}$ and set the parameters $\beta \in (0,1)$ $0 < \alpha_{min} < \alpha_{max}$

For $\ell = 0, 1, 2, ...$

- Choose the stepleng $\alpha_{\ell} \in [\alpha_{min}, \alpha_{max}]$ and a positive definite scaling matrix D_{ℓ}
- Compute the descent direction

 $d^{(\ell)} = P_{\mathscr{Y}, D_{\ell}^{-1}}(y^{(\ell)} - \alpha_{\ell} D_{\ell} \nabla J(y^{(\ell)})) - y^{(\ell)}$

Armijo Backtracking loop: compute λ_{ℓ} such that $J(y^{(\ell)} + \lambda_{\ell} d^{(\ell)}) \leq J(y^{(\ell)}) + \beta \lambda_{\ell} \nabla J(y^{(\ell)})^T d^{(\ell)}$

End

End

	Set	$y^{(\ell+1)} = y^{(\ell)} + \lambda_\ell d^{(\ell)}$	
End			

Convergence analysis: [1]

Let $\{x^{(k)}\}$ the sequence generated by the CBGP algorithm and assume that x^* is a limit point of $\{x^{(k)}\}$. Then, x^* is a stationary point. Remarks: no convexity assumptions, no limitations on the numbers of blocks, convergence for any choice of inner iterations number (just bounded).

Implementation issues: exploit scaling matrix and steplenght choices to improve convergence (e.g. Barzilai-Borwein steplength selection rules).

Applications: [1],[2],[3]

Nonnegative Matrix Factorization (NMF)

Given a data matrix $V \in \mathbb{R}^{n \times m}$ and a positive integer r < m, find $W \in \mathbb{R}^{n \times r}, H \in \mathbb{R}^{r \times m}$ s.t.

 $\min_{W \ge 0, H \ge 0} \frac{1}{2} \|WH - V\|_F^2$

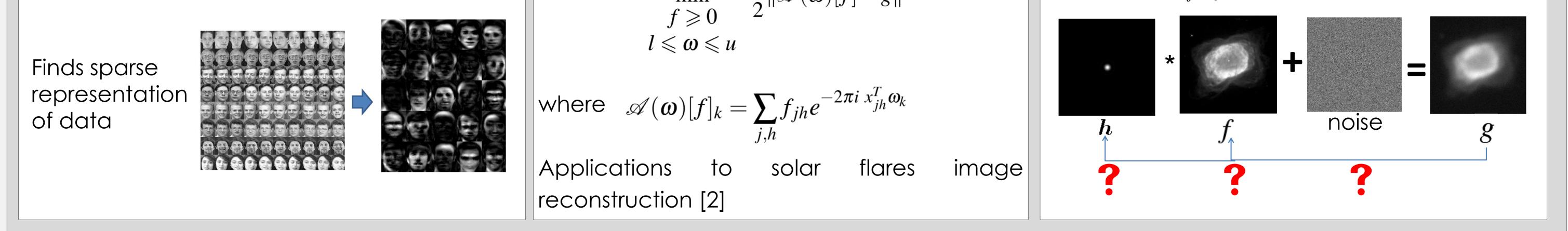
Semi blind deconvolution from sparse Fourier data

Given the data $g \in \mathbb{C}^N$, find the image $f \in \mathbb{R}^{n \times n}$, $f_{jh} = f(x_{jh})$, $x_{jh} \in \mathbb{R}^2$, j, h = 1, ..., nand the frequencies $\omega \in \mathbb{R}^{N \times 2}$ s.t.

 $\min_{f > 0} \quad \frac{1}{2} \| \mathscr{A}(\boldsymbol{\omega})[f] - g \|^2$

Blind deconvolution

Given the observed image $g \in \mathbb{R}^{n \times n}$, find the true image $f \in \mathbb{R}^{n \times n}$ and the psf $h \in \mathbb{R}^{n \times n}$ s.t. $\begin{array}{c} \min \\ f \geqslant 0 \\ 0 \leqslant h \leqslant u \\ \sum_{ij} h_{ij} = 1 \end{array}$



References:

S. Bonettini (2011). Inexact block coordinate descent methods with application to nonnegative matrix factorization, IMA J. Numer. Anal., 31:1131-1452
S. Bonettini, A. Cornelio, M. Prato, (2012). Semi blind deconvolution for Fourier based image restoration, submitted
M. Bertero, S. Bonettini, A. La Camera, M. Prato, (2012). A new blind deconvolution approach with Strehl constrained psf, in preparation
L. Grippo, M. Sciandrone (1999). Globally convergent block coordinate techniques for unconstrained optimization, Optim. Methods Softw., 10:587-637
L. Grippo, M. Sciandrone (2000). On the convergence of block nonlinear Gauss-Seidel method under convex constraints, Oper. Res. Lett., 26:127-136