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Abstract

The deconvolution of astronomical images by the Richardson-Lucy method (RLM) is extended here to the problem of multiple image deconvolution
and the reduction of boundary effects. We show the multiple image RLM in its accelerated gradient-version SGP (Scaled Gradient Projection).
Numerical simulations indicate that the approach can provide excellent results with a considerable reduction of the boundary effects. Also exploiting
GPUlib applied to the IDL code, we obtained a remarkable acceleration of up to two orders of magnitude [Prato et al. 2012].

Multiple image deconvolution problem

Multiple image deconvolution problem with Poisson data:

min
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where:

◮
~f is the unknown object;

◮ ~gj (j = 1, . . . , p) are the detected images;

◮ Aj
~f = ~Kj ∗ ~f (j = 1, . . . , p), where ~Kj is the j-th PSF,

normalized to unit volume;

◮
~bj (j = 1, . . . , p) are the background emissions;

◮ S is the image domain.

From the standard expectation maximization method
[Shepp & Vardi 1982] applied to to this problem, we obtain
the multiple image RL method
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Since
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algorithm (2) can be seen as a scaled gradient method, with a

scaling given, at iteration k , by ~f (k)/p. Therefore the
application of SGP [Bonettini et al. 2009] to this problem is
straightforward.

Boundary effect correction

If the target ~f is not completely contained in the image domain, the previous deconvolution
method produce annoying boundary artifacts.
Idea: reconstruct the object ~f over a broader domain R ⊃ S . If we introduce:

◮ an array S̄ containing R and S and such that Fourier transform in S̄ can be computed by
FFT;

◮ the masks ~MR, ~MS , defined over S̄ , which are 1 over R , S respectively and 0 outside;

◮ the matrices Aj and AT
j (j = 1, . . . , p) defined as

(Aj
~f )(m) = ~MS(m)

∑

n∈S̄

~Kj(m− n)~MR(n)~f (n) (4)
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where ~Kj , ~gj (j = 1, . . . , p) have been extended to S̄ by zero padding, then J0(~f ;~g) is given
again by (1), with S replaced by S̄ , while its gradient is now given by

∇J0(~f ;~g) =

p
∑

j=1

{

AT
j
~1− AT

j

~gj

Aj
~f + ~bj

}

. (6)

The domain R can be defined through the functions

~αj(n) = (AT
j
~1)(n) , ~n ∈ S̄ , (7)

~α(n) =

p
∑
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in the following way:
R = {~n ∈ S̄ | ~αj(~n) ≥ σ; j = 1, .., p} . (8)

where σ is a thresholding value. Then the RL algorithm, with boundary effect correction, is given
by
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, (9)

the quotient being zero in the pixels outside R .

Numerical results

Comparison between:

◮ Multiple RLM

◮ SGP

For testing the accuracy of the deconvolution method with boundary effect correction we apply “inverse
crime” on an image of nebula NGC7027. The image is partitioned into 4 partially overlapping sub-images,
the methods with boundary effect correction are applied and the final reconstruction is obtained as a mosaic
of the four partial reconstructions.
Test setting:

- true object: NGC7027 nebula

- blurring: 3 PSF generated according to LINC-NIRVANA [Herbst et al. 2003] model and with
equispaced orientations of the baseline (0o,60o,120o)
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Figure: A: Original Nebula, B: its blurred and noisy image in the case m = 10 and baseline orientation 0o; C: reconstruction

of the global image; D: reconstruction as a mosaic of four reconstructions of partially overlapping sub-domains, using the

algorithms with boundary effect correction.

Table: Reconstruction of the Nebula

m = 10
Algorithm It Err Sec SpUp AlgSpUp

RL 2899 0.034 13978 - -
RL CUDA 2899 0.034 174.2 80.2 -

SGP 160 0.034 873.3 - 16.0
SGP CUDA 160 0.034 15.45 56.5 -

m = 15
Algorithm It Err Sec SpUp AlgSpUp

RL 243 0.094 1174 - -
RL CUDA 243 0.094 15.28 76.8 -

SGP 11 0.087 69.88 - 16.8
SGP CUDA 11 0.086 1.532 45.6 -

Figure: Simulated PSF of LINC-NIRVANA with SR = 70 % (left panel) and

corresponding MTF (right panel)
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