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Abstract

The deconvolution of astronomical images by the Richardson-Lucy method (RLM) is extended here to the problem of multiple image deconvolution
and the reduction of boundary effects. We show the multiple image RLM in its accelerated gradient-version SGP (Scaled Gradient Projection).
Numerical simulations indicate that the approach can provide excellent results with a considerable reduction of the boundary effects. Also exploiting
GPUlib applied to the IDL code, we obtained a remarkable acceleration of up to two orders of magnitude [Prato et al. 2012].

Boundary effect correction

Multiple image deconvolution problem

If the target f is not completely contained in the image domain, the previous deconvolution
method produce annoying boundary artifacts.

Multiple image deconvolution problem with Poisson data:
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application of SGP [Bonettini et al. 2009] to this problem is the quotient being zero in the pixels outside R.

straightforward.

Numerical results

Comparison between:

» Multiple RLM Table: Reconstruction of the Nebula
» SGP m = 10
Algorith It E Al
For testing the accuracy of the deconvolution method with boundary effect correction we apply “inverse g(E{rII_ m 5899 0 Or3r4 1?3;8 Sp_Up gS_pUp
crime’ on an image of nebula NGC7027. The image is partitioned into 4 partially overlapping sub-images, |
. . . . Co . . RL_.CUDA 2899 0.034 174.2 80.2 -
the methods with boundary effect correction are applied and the final reconstruction is obtained as a mosaic SGP 160 0.034 8733 - 16.0
of the fOl.JI’ partial reconstructions. SGP CUDA 160 0034 1545 565 ]
Test setting: T
- true object: NGC7027 nebula | Algorithm It Err  Sec SpUp AlgSpUp
- blurring: 3 PSF generated according to LINC-NIRVANA [Herbst et al. 2003] model and with RI 243 0094 1174 - )
equispaced orientations of the baseline (0°,60°,120°) RL CUDA 243 0094 1528 76.8 i
SGP 11 0.087 69.88 - 16.8
- - SGP CUDA 11 0.086 1.532 45.6 -
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Figure: A: Original Nebula, B: its blurred and noisy image in the case m = 10 and baseline orientation 0°; C: reconstruction Figure: Simulated PSF of LINC-NIRVANA with SR = 70 % (

left panel) and
of the global image; D: reconstruction as a mosaic of four reconstructions of partially overlapping sub-domains, using the

corresponding MTF (right panel)
algorithms with boundary effect correction.
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