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Abstract

In several supervised learning applications, it happens that reconstruction methods have to be applied repeatedly before being able to achieve the
final solution. In these situations, the availability of learning algorithms able to provide effective predictors in a very short time may lead to
remarkable improvements in the overall computational requirement. Here we consider the kernel ridge regression problem and we look for predictors
given by a linear combination of kernel functions plus a constant term, showing that an effective solution can be obtained very fastly by applying
specific regularization algorithms directly to the linear system arising from the Empirical Risk Minimization problem.
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leading, respectlvely, to the linear systems (where 1 =(1,...,1)Y) For rank-deficient kernels (e.g., the linear kernel when d << n) many
(K +nX\)c+bl =y (K + 11t + nAc+bl =y singular values are zero, thus allowing to avoid the calculation of the
; , corresponding singular vectors.
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CPU time required by these approaches: ©(4n3/3), due to the || Why Conjugate Gradient: O(tn?) instead of the O(n3) required by the
eigendecomposition of K or K + 11, “direct” approaches, with t low due to regularization.
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