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AbstractAbstract  
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In several supervised learning applications, it happens that reconstruction methods have to be applied repeatedly before being able to achieve the 
final solution. In these situations, the availability of learning algorithms able to provide effective predictors in a very short time may lead to 
remarkable improvements in the overall computational requirement. Here we consider the kernel ridge regression problem and we look for predictors 
given by a linear combination of kernel functions plus a constant term, showing that an effective solution can be obtained very fastly by applying 
specific regularization algorithms directly to the linear system arising from the Empirical Risk Minimization problem. 

Regularized least squares (RLS) for learning: given a training set    
 
 

 
find the decision function                  to predict the label y of new 
examples x by solving 
 
   (1) 
 

 
where:   - λ is a positive regularization parameter, 
                - H is a Reproducing Kernel Hilbert Space with kernel K [1]. 
Representer Theorem: the solution of (1) in a RKHS assumes the form 
 
   (2) 
 
where c is the solution of the linear system [2] 
 

   (3) 
being Kij = K(xi , xj). 
More general prediction function (SVM choice): 
 

   (4) 
 

Two different generalizations of (1) [3,4,5]: 
 
(a)    (5) 
 
          (constant b not penalized) (constant b penalized) 
 
(b)   (6) 
 
leading, respectively, to the linear systems (where 1 = (1,…,1)t) 
 
 
           (7)  (8) 
 

CPU time required by these approaches: O(4n3/3), due to the 
eigendecomposition of K or K + 11t. 
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S = f(xi; yi) : i = 1; : : : ; ng ½X £Y; X ½ Rd; Y ½ R
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From H to Rn : problem (3) is the Lavrentiev [6] regularized version of the 
linear system Kc = y, that arises from the minimization of the Least 
Squares functional when the desired solution is in the form (2). 
With solutions in the form (4), such linear system becomes 
 

   (9) 
 

Instead of adding a penalty term on f – as in (5), (6) –, we can directly 
apply a regularization algorithm to the linear system (9), e.g.: 
- Tikhonov 
 
 

- Conjugate Gradient 
 
 
 
 
 
 
 
 
 
 
 

 
 

Why Tikhonov: the regularized solution can be written in term of the SVD  
 

of      : 
 
 

For rank-deficient kernels (e.g., the linear kernel when d << n) many 
singular values are zero, thus allowing to avoid the calculation of the 
corresponding singular vectors.  
 
Why Conjugate Gradient: O(tn2) instead of the O(n3) required by the 
“direct” approaches, with t low due to regularization. 
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Dataset # examples # features 

1 Abalone 4177 8 

2 Bodyfat 252 14 

3 Cpusmall 8192 12 

4 Housing 506 13 

5 Mg 1385 6 

6 Mpg 392 7 

7 Space 3107 6 

8 Triazines 186 60 

Test settingsTest settings  
 

 2/3 training, 1/3 test 
 100 values for λ geometrically 
distributed in [10-10,105] 
 50 max iterations for CG 
 5x5 grid for the parameters (C,ε) of 
SVMlight [7], within [1,500] x [10-3,10-1]  
 RLS, TIKH and CG implemented in 
Matlab R2010a 
 PC 1.60 GHz Intel Core i7, Windows 
7 environment 

 Regularization approaches are 
faster than SVM 
 TIKH outperforms RLS for rank-
deficient kernels, while becomes 
heavier if the full SVD has to be 
computed 
 CG is always the faster 
 TIKH and CG provide flatter 
error vs λ / t curves, thus allowing 
a more stable construction of the 
solution, e.g. with cross validation.  

ConclusionsConclusions  

Figures 
 

Top: reconstruction errors and 
times for the eight datasets in the 
case of linear and Gaussian kernels 
 

Bottom: reconstruction errors as 
functions of λ or t in the case of 
Gaussian kernel 
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