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Motivations

Health hazards for patients due to ionizing radiations in Com-
puted tomography (CT) can be reduced by limiting the irra-
diation to a subregion of the object to be reconstructed, the
so-called region-of-interest (ROI) [1].

Goal
Obtaining a stable reconstruction of the ROI without any
assumption on the size and location of the ROI and over-
coming the ill-posedness of the problem and the instability
of naive local reconstruction algorithms.
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Examples of recoverable regions:
(a) from (at least) one projection view the object is

completely recovered;
(b) a known subregion inside the ROI is given;
(c) no assumption either on the size or on the location of the

ROI, except for its convex shape.

2D problem setting

The aim of ROI CT is to reconstruct an integrable function f
from its Radon projections y0 known only within a subregion
inside the field of view, while the rest of the image is ignored.
This is accomplished by setting:

y0(θ, τ ) = M(θ, τ )Rf (θ, τ )
where
Rf (θ, τ ) =

∫
`(θ,τ )

f (x) dx =
∫
R2
δ(τ − x · eθ) f (x) dx

is the Radon transform of f at (θ, τ ) and the mask
M(θ, τ ) = 1P(S)(θ, τ )

identifies the ROI S in the sinogram space [2].
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Given y0 defined on P(S), the goal is to extrapolate it to the
region outside P(S), ensuring that the Radon projections y =
Rf comes from the Radon transform of a function f ∈ L1∩L2:

MRf = My = y0 (data fidelity)
(1−M)Rf = (1−M)y (data consistency)

2D discrete setting

Denoting with W the KP × N 2 forward projection matrix,
the data fidelity and consistency equations read as follows:

MWf = My = y0 (data fidelity)
(IKP −M) Wf = (IKP −M) y (data consistency)

where K = # projection angles, P = # detector elements,
N = width in pixel of the reconstructed object.
Unfortunately, these equations alone do not lead to a unique
solution [3]. A suitable one can be derived using a Tikhonov-
like regularization:

min
f∈Ωf
y≥0

Ψ(f, y)

where
Ψ(f, y) = 1

2
‖MWf − y0‖2

2

+ 1
2
‖(IKP −M)(Wf − y)‖2

2

+ λ ‖Φ((IKP −M)y + y0)‖2
2

and Φ is the shearlet (resp. wavelet) transform [4].
Slight modifications of the objective function can be taken into
account, coupling the regularization term with, for instance, a
Total Variation term:

Ψ̃(f, y) = Ψ(f, y) + ρTVδ(f )
Here, λ and ρ are regularization parameters, δ is the TV
smoothing parameter.

Distance-Driven method

Each object pixel (voxel) and detector cell is mapped onto a
common axis (plane) by its projecting boundary midpoints.

sn = ξm+1 − υn
υn+1 − υn

dm + υn+1 − ξm+1

υn+1 − υn
dm+1

The length of the overlap is used as projection weight [5].
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• Low computational cost
•Avoids artifacts (e.g., due to interpolation) of classical
methods

•Allows for highly sequential memory access patterns.

Main Results
Objective function = Discrepancy terms + Reg. + TV

Radius iter. PSNR iter. Rel. Err.
0.5 1140 45.6933 1140 0.0249

λ = 5e− 04 ρ = 0.1 λ = 5e− 04 ρ = 0.1
0.3 3168 40.3471 3168 0.10245

λ = 5e− 04 ρ = 1 λ = 5e− 04 ρ = 1
0.25 2112 36.4519 2112 0.2005

λ = 5e− 04 ρ = 1 λ = 5e− 04 ρ = 1
0.2 302 37.6381 302 0.24412

λ = 5e− 04 ρ = 1 λ = 5e− 04 ρ = 1
0.15 604 34.6311 604 0.50634

λ = 5e− 04 ρ = 1 λ = 5e− 04 ρ = 1
0.1 943 31.1664 943 1.2489

λ = 5e− 04 ρ = 1 λ = 5e− 04 ρ = 1

Objective function = Discrepancy terms
Radius iter. PSNR iter. Rel. Err.
0.5 7000 45.008 7000 0.026944
0.3 550 36.9959 550 0.15069
0.25 194 36.7668 194 0.19336
0.2 179 35.191 179 0.32356
0.15 7000 33.2901 7000 0.59087
0.1 2 35.9742 2 0.71803

Objective function = Discrepancy terms + Reg.
Radius iter. PSNR iter. Rel. Err.
0.5 1054 41.495 1054 0.040376

λ = 5e− 04 λ = 5e− 04
0.3 1495 34.8624 1495 0.19264

λ = 5e− 04 λ = 5e− 04
0.25 1259 31.9533 1259 0.33654

λ = 5e− 04 λ = 5e− 04
0.2 678 31.654 678 0.48619

λ = 5e− 04 λ = 5e− 04
0.15 2189 28.4602 2189 1.0304

λ = 5e− 04 λ = 5e− 04
0.1 2373 28.7556 2373 1.6484

λ = 5e− 04 λ = 5e− 04

Optimal parameters values Object reconstr. abs. error rel. error
Radius iter. PSNR iter. Rel. Err.
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Scaled gradient projection method

For the solution an iterative approach based on the scaled gra-
dient projection method (SGP) has been considered [6]. It
is a first-order descent method for convex (and non-convex)
functions, with adaptive step-length selection.
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This method is particularly effective when the projection onto
the feasible region is not a heavy task, such as in the case of box
constraints possibly, coupled with a single linear constraint.

Future perspectives

• Investigate sparse reconstruction
•Obtain stable reconstructions from (Poisson) noisy
sinogram

• Separable footprint method for system matrix
•Apply the same machinery to helical CT
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