Numerical assessment of the ROI CT problem in fan-beam geometries Tatiana A. Bubba¹, D. Labate² and G. Zanghirati¹ ¹Dept. of Maths and Comp. Sci., Univ. of Ferrara, and INdAM – GNCS ²Department of Mathematics, University of Houston {bbbtnl, g.zanghirati}@unife.it, dlabate@math.uh.edu

Motivations

Health hazards for patients due to ionizing radiations in Computed tomography (CT) can be reduced by limiting the irradiation to a subregion of the object to be reconstructed, the so-called region-of-interest (ROI) [1].

Examples of recoverable regions:

- (a) from (at least) one projection view the object is completely recovered;
- (b) a known subregion inside the ROI is given;
- (c) no assumption either on the size or on the location of the ROI, except for its convex shape.

2D problem setting

The aim of ROI CT is to reconstruct an integrable function ffrom its **Radon** projections y_0 known only within a subregion inside the field of view, while the rest of the image is ignored. This is accomplished by setting:

$$y_0(heta, au) = M(heta, au) \, \mathcal{R}f(heta, au)$$

where

 $\mathcal{R}f(heta, au) = \int_{\ell(heta, au)} f(\mathbf{x}) \, d\mathbf{x} = \int_{\mathbb{R}^2} \delta(au - \mathbf{x} \cdot \mathbf{e}_{ heta}) \, f(\mathbf{x}) \, d\mathbf{x}$

is the Radon transform of f at (θ, τ) and the mask

$$M(\theta,\tau) = 1_{\mathcal{P}(S)}(\theta,\tau)$$

identifies the ROI S in the sinogram space [2].

Given y_0 defined on $\mathcal{P}(S)$, the goal is to extrapolate it to the region outside $\mathcal{P}(S)$, ensuring that the Radon projections y = 1 $\mathcal{R}f$ comes from the Radon transform of a function $f \in L^1 \cap L^2$:

$$M\mathcal{R}f = My = y_0$$
 (data fidelity)
 $(1 - M)\mathcal{R}f = (1 - M)y$ (data consistency)

2D discrete setting

Denoting with W the $KP \times N^2$ forward projection matrix, the data fidelity and consistency equations read as follows:

$$\mathbf{MWf} = \mathbf{My} = \mathbf{y}_0 \qquad \text{(data fidelity)}$$
$$(\mathbf{I}_{KP} - \mathbf{M}) \mathbf{Wf} = (\mathbf{I}_{KP} - \mathbf{M}) \mathbf{y} \qquad \text{(data consistency)}$$

where K = # projection angles, P = # detector elements, N = width in pixel of the reconstructed object.

Unfortunately, these equations alone do not lead to a unique solution [3]. A suitable one can be derived using a Tikhonovlike regularization:

$$\min_{\substack{f \in \Omega_f \\ y \ge 0}} \Psi(f, y)$$

where

$$\Psi(f, y) = \frac{1}{2} \|MWf - y_0\|_2^2 + \frac{1}{2} \|(\mathbf{I}_{KP} - M)(Wf - y)\|_2^2 + \lambda \|\Phi((\mathbf{I}_{KP} - M)y + y_0)\|_2^2$$

and Φ is the shearlet (resp. wavelet) transform [4]. Slight modifications of the objective function can be taken into account, coupling the regularization term with, for instance, a Total Variation term:

$$\widetilde{\Psi}(f, y) = \Psi(f, y) + \rho \operatorname{TV}_{\delta}(f)$$

Here, λ and ρ are regularization parameters, δ is the TV smoothing parameter.

Distance-Driven method

Each object pixel (voxel) and detector cell is mapped onto a common axis (plane) by its projecting boundary midpoints.

$$s_n = \frac{\xi_{m+1} - \upsilon_n}{\upsilon_{n+1} - \upsilon_n} d_m + \frac{\upsilon_{n+1} - \xi_{m+1}}{\upsilon_{n+1} - \upsilon_n} d_{m+1}$$

The length of the overlap is used as projection weight [5].

- Low computational cost
- Avoids artifacts (*e.g.*, due to interpolation) of classical methods
- Allows for highly sequential memory access patterns.

For the solution an iterative approach based on the scaled gradient projection method (SGP) has been considered [6]. It is a first-order descent method for convex (and non-convex) functions, with adaptive step-length selection.

This method is particularly effective when the projection onto the feasible region is not a heavy task, such as in the case of box constraints possibly, coupled with a single linear constraint.

- Investigate sparse reconstruction • Obtain stable reconstructions from (Poisson) noisy sinogram
- Separable footprint method for system matrix

Main Results **Object** reconstr

ojectiv	ve functi	on = Discrepance	cy terms + Reg.	$+ \mathrm{TV}$	Opt	timal p	arame	ters v	values
Radius	3	iter. PSNR	iter. Rel. En		Radius	iter.	PSNR	iter.	Rel.
0.5	1	140 45.6933	1140 0.0249		0.5	1642 4	49.5938	1642	0.015
	$\lambda = k$	$5e - 04 \rho = 0.1$	$\lambda = 5e - 04 \rho$	= 0.1					
0.3	3	6168 40.3471	3168 0.1024			SGP -	$+ \mathrm{TV}$	SG	P + T
	$\lambda = 5e - 04 \rho = 1$		$\lambda = 5e - 04 \rho$	= 1		$\rho =$	0.01	ρ	= 0.01
0.25	2112 36.4519		2112 0.2005						
	$\lambda = 5e - 04 \rho = 1$		$\lambda = 5e - 04 \rho$	= 1					
0.2	302 37.6381		302 0.24412		0.3	2933 4	41.5101	2933	0.089
	$\lambda = 5e - 04 \rho = 1$		$\lambda = 5e - 04 \rho$	$04 \rho = 1$					
0.15	604 34.6311		604 0.50634			SGP -	$+ \mathrm{TV}$	SG	P + T
	$\lambda = 5e - 04 \rho = 1$		$\lambda = 5e - 04 \rho$	= 1	$\rho = 1$			$\rho = 1$	
0.1	943 31.1664		943 1.2489						
	$\lambda =$	$5e - 04 \rho = 1$	$\lambda = 5e - 04 \rho$	= 1					
					0.25	1075 4	13 5306	1075	0 088
(Objective	e function $=$ Dis	screpancy terms		0.20	1010	10.0000	1010	0.000
	Radius	iter. PSNR	iter. Rel. Err.			SGP -	$+ \mathrm{TV}$	SG	Р + Т
	0.5	7000 45.008	7000 0.026944			0 =	- 1		n = 1
	0.3	550 36.9959	550 0.15069			Ρ-	- 1	1	p - 1
	0.25	194 36.7668	194 0.19336						
	0.2	179 35.191	179 0.32356		0.0	1010	110000	1010	0.10
	0.15	7000 33.2901	7000 0.59087		0.2	1910 4	14.8966	1910	0.10
	0.1	2 35.9742	2 0.71803					aa	
						SGP -	+ TV	SG	P + T
Obje	ctive fu	nction = Discreption	pancy terms $+$ I	eg.		$\rho =$	= 1	I	$\rho = 1$
_	Radius	iter. PSNR	iter. Rel. Err.						
-	0.5	1054 41.495	1054 0.040376						
		$\lambda = 5e - 04$	$\lambda = 5e - 04$		0.15	556 3	9.5493	556	0.287
	0.3	1495 34.8624	1495 0.19264						
		$\lambda = 5e - 04$	$\lambda = 5e - 04$			SGP -	$+ \mathrm{TV}$	SG	P + T
	0.25	1259 31.9533	1259 0.33654			ρ =	= 1	l	$\rho = 1$
		$\lambda = 5e - 04$	$\lambda = 5e - 04$						
-	0.2	678 31.654	678 0.48619						
-		$\lambda = 5e - 04$	$\lambda = 5e - 04$		0.1	2 35	5.9742	2	0.718
	0.15	2189 28.4602	2189 1.0304		0.1	_ 00		_	0.,10
		$\lambda = 5e - 04$	$\lambda = 5e - 04$			SC	βP		SGP
-	0.1	2373 28.7556	2373 1.6484				-		

Scaled gradient projection method

Future perspectives

- Apply the same machinery to helical CT

References

- **[1]** R. Clackdoyle and M. Defrise, *Tomographic* Reconstruction in the 21st century. Region-of-interest reconstruction from incomplete data, IEEE Signal Processing, **60** (2010).
- [2] B. Goossens, D. Labate and B. Bodmann, *Region*of-interest Computed Tomography by Regularity-Inducing Convex Optimization (2014).
- [3] B. Vandeghinste, B. Goossens et al., Iterative CT reconstruction using shearlet-based regularization, IEEE Trans. Nuclear Science 5 (2013).
- [4] G. Kutyniok and D. Labate, *Shearlets. Multiscale* Analysis for Multivariate Data, Birkhäuser (2012).
- [5] B. De Man and S. Basu, *Distance-driven projection and* backprojection in three dimensions, Physics in Medicine and Biology, 7 (2004).
- [6] S. Bonettini, R. Zanella, L. Zanni, A scaled gradient projection method for constrained image deblurring, Inverse Problems **25** (2009), 015002.

Acknowledgements

T. A. B. is supported by the Young Researchers Fellowship 2014 of the University of Ferrara and by the Italian FIRB2012, grant n. RBFR12M3AC.