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Goal and Motivations

Health hazards for patients due to ionizing radiations in Computed tomography (CT) can be reduced
by limiting the irradiation to a subregion of the object to be reconstructed, the so-called region-of-
interest (ROI). The goal is to obtain a stable reconstruction of the ROI without any assumption either
on the size or the location of the ROI, overcoming the ill-posedness of the problem and the instability
of naive local reconstruction algorithms.
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Examples of recoverable regions:

(a) from (at least) one projection view the object is completely recovered;
(b) a known subregion inside the ROI is given;
(c) no assumption either on the size or on the location of the ROI, except for its convex shape.

2D problem setting
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The aim of ROI CT is to reconstruct an integrable function f from its X-ray projections y0 known
only within a subregion inside the FOV, while the rest of the image is ignored. This is accomplished
by setting:

y0(θ, τ ) = M(θ, τ )X f (θ, τ )

where
X f (θ, τ ) =

∫
`(θ,τ )

f (x) dx =

∫
R2
δ(τ − x · eθ) f (x) dx

is the X-ray transform of f at (θ, τ ) and the mask M identifies the ROI S in the sinogram space

M(θ, τ ) = 1P(S)(θ, τ ).

Given y0 defined on P(S), the goal is to extrapolate it to the region outside P(S), ensuring that the
X-ray projections y = Rf comes from the X-ray transform of a function f ∈ L1 ∩ L2:

MRf = My = y0 (data fidelity)
(1−M)Rf = (1−M)y (data consistency)

2D discrete setting

Denoting with W the NθNdtc × N2 forward projection matrix, the data fidelity and consistency
equations read as follows:

MWf = My = y0 (data fidelity)
(INθNdtc

−M) Wf = (INθNdtc
−M) y (data consistency)

where Nθ = # projection angles, Ndtc = # detector elements, N = width in pixel of the reconstructed
object.

Unfortunately, these equations alone do not lead to a unique solution [5]. A suitable one can be
derived by using regularization:

f̂ = argmin
f∈RN2

Ψ(f)

where
Ψ(f) =

1

2
‖MWf − y0‖22 + λ ‖Φ((INθNdtc

−M)Wf + y0)‖pp + ιΩf
.

Here, λ is a regularization parameter; ιΩf
is the indicator function of the feasible region Ωf , which is

defined as f ≥ 0 or 0 ≤ f ≤ L, where L is the image maximum pixel intensity; Φ is the shearlet (or
wavelet) transform matrix [6], and p = 2 or p = 1.

Distance-Driven method
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Each object pixel (voxel) and detector cell is mapped onto a

common axis (plane) by its projecting boundary midpoints:

dm+1 =
νn+1 − ξm+1

ξm+2 − ξm+1
sn +

ξm+2 − νn+1

ξm+2 − ξm+1
sn+1

The length of the overlap is used as projection weight.

There are two main ingredients [4]:
• kernel operation:

dm =
∑
n

wm,nsn with wm,n =

[
min(ξm+1, νn+1)−max(ξm, νn)

]
+

ξm+1 − ξm
, [x]+ = max(x, 0) ,

• there is a (possibly zero) length of overlap between each image pixel and each detector cell due to
the bijection between the position on the detector and the position within an image row (or column).

Advantages:

• Low computational cost and highly sequential memory access patterns

•Avoids artifacts (e.g., due to interpolation) of classical methods

Variable metric inexact line-search algorithm

VMILA belongs to the class of proximal-gradient methods [1]. Main features:

•Designed for problem of the form minx∈Rn g(x) where

g(x) = g0(x) + g1(x)

with g1 is convex, possibly nonsmooth, and g0 is smooth, possibly non-convex. This formulation
includes also constrained problems over convex sets.

• descent direction based on the proximal operator associated to the convex part of the objective
function

proxg0(x) = arg min
z∈Rn

g0(z) +
1

2
‖z − x‖2 ∀ x ∈ Rn

•Armijo-like rule to determine the step size along the descent direction

• adaptive step-length selection (BB-like updating rules)

Numerical results

σ = 0.05 σ = 0.1

rROI = 0.25N rROI = 0.15N rROI = 0.1N rROI = 0.25N rROI = 0.15N rROI = 0.1N
iter value sec iter value sec iter value sec iter value sec iter value sec iter value sec

ROI PSNR ROI PSNR
Sm 83 35.86 4.7 109 33.61 6.0 106 32.57 5.8 77 35.49 5.3 111 35.37 7.6 102 37.12 6.9

NSm 83 36.94 15.1 78 41.98 14.2 48 45.43 8.6 48 37.76 10.5 72 40.92 15.9 62 44.64 13.6
ROI Relative error ROI Relative error

Sm 83 0.21 4.7 109 0.57 6.0 106 1.06 5.8 77 0.23 5.3 111 0.46 7.6 102 0.63 6.9
NSm 83 0.19 15.1 78 0.22 14.2 48 0.24 8.6 48 0.17 10.5 72 0.25 15.9 62 0.26 13.6

Optimal results, with respect to PSNR and relative error, for p=2 (Sm) and p=1 (NSm), and λ=10−4.

σ = 0.05 σ = 0.1
rROI = 0.25N rROI = 0.15N rROI = 0.1N rROI = 0.25N rROI = 0.15N rROI = 0.1N
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Optimal reconstructions of the Shepp-Logan phantom, sized 128× 128, for decreasing radii.
First row: smooth formulation (p = 2). Second row: nonsmooth formulation (p = 1).

Noise: white Gaussian process, with zero mean and variance σ = 0.05 (left) or σ = 0.1 (right).

Conclusions and Forthcoming Research

•Accurate ROI reconstructions are recovered regardless of the location and size of the ROI, and for
rather small ROI sizes

•Nonsmooth approach performs better: 1-norm suppresses smaller shearlet coefficients in favor of
few larger shearlet coefficients, associated to edges

• Slightly better reconstructions can be obtained by exploiting a smooth TV approach. However, this
is strongly dependent on the phantom features and may not hold for more general (real) data.

Future perspectives:

•Obtain stable reconstructions from Poisson noisy data and real data

•Apply the same machinery to helical CT
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