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Motivation
DIC microscopy allows to image
unstained biological specimens, it
achieves high lateral resolution
N

\ and produces high contrast ima-
,_\@ ges of phase objects.

It is accomplished from the inter-
ference of two waves that have a
lateral differential displacement
(shear) and are phase shifted rela-
tive one to each other.
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The resulting intensity image is
given by a nonlinear function of
the hidden phase gradients of the
object.

Previous works for phase estima-
tion in DIC microscopy have con-
sidered methods such as Phase
shifting [1], Transport of Intensity
[2], and Rotational-Diversity [3].

Fig 1. DIC system

In order to retrieve information hidden in the phase gra-
dients, it is necessary to solve a nonlinear, ill-posed inverse
problem.

Proposed approach: We present a gradient-based optimi-
zation method which minimizes the sum of a nonlinear

least-squares discrepancy measure and a smooth approxi-
Qation of the total variation. J

Polychromatic rotational-
diversity model

The intensity image is described by the non-linear function
of the phase gradient in the shear direction given by

ix2(x) =ay ‘(e_j% * hk,a) (x)‘z (1)

where a4 is a constant; k € {0,1, ..., K — 1};
x € y ={0,1, ..., N — 1}% where N is the number of ele-
ments in each dimension of the object and image space.
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e /71 is the specimen’s transmission function, being ¢ (x)
the specimen’s phase function we want to retrieve.

hy 2 () is the k-th rotation of the polychromatic DIC ampli-
tude point spread function.

1 . .
hya(x) =5 e 7D 2(x — Ax, y) — €4%py 1 (x + Ax, )| (2)

expressed in terms of the coherent PSF of the microsco-
pe’s objective lens py 2 (x) at angle 1, and for the wavelen-
gth A, where 2A0 is the DIC bias retardation and 2Ax is
the shear.

Gradient-based Phase Estimation

Az K—1
fni}vlzl(qb) = Z Z Z[Ok,a(x) — ik,a(x)]z +wrv(®) (3)
€ A=21 k=0 x€x

where oy, , is the k-th observed polychromatic image, iy  is
the k-th theoretical polychromatic image as shown in equa-
tion (1), Jrv is a smooth approximation of the total varia-
tionand u is the regularization parameter.

Because of model (1):

© The true phase might be recovered only up to a real
constant: J(¢ + ¢ 1) = J(¢), where 1 is the vector of all
ones.

Problem (3) has been approached by using a gradient-
descent method defined as

™D = ™ — a,, V] (™) (4)

where &y, is the step size.

The components of gradient are given by
A3 K-1

() <\ 4 0Jrv ()
P (xg) 1%41 kZ:(‘) lf(qb' XoRuca) + 1 dp(xy) 5)
here

E(,xo, hiz) =S {[(Tk,a * (hk,}L ® e_j%)) ® h,:A] (x0). d@} (6)

Convolution-based: Compact and fast computations

3(-) denotes the operator that takes the imaginary part of
its argument, T = ixa— Oka, Meixo) = hea(=xp),

* is the componentwise product and & is the convolution
operator.

Choice of the step size parameter

The stationarity of the limit points of the sequence genera-
ted by (4) is guaranteed by choosing the step size

am = aldy'm where ¥ € (0,1) and L, is the smallest na-
tural number satisfying the Armijo condition, being g € (0,1)

J(@™ — anVi($™)) < (™) ~ Ban|7)(@™)|" (7)

The initial guess a(?) is chosen using a rule recently propo-

sed by Fletcher [4]:

@ Itis based on the storage of g consecutive gradients
and steplengths.

® |t computes gRitz values approximating some eigenva-

ues of the Hessian matrix of /.

® |t improves speed of convergence.

Numerical Tests

Physical parameters

Image size 64 x 64 pixels Objective 10x /0.3 N.A.
Pixel size 0.30um x 0.30um  Bias 200 = 1.57rad
Physical size 19.2 ym x19.2 um  Shear Ax = 0.68um

Algorithm set up parameters

»0 =0

Everyq = 4 iterations

y =0.5andf =10"*
Regularization p.yn, = 1072 ; terpss = 4 * 1072
TV smoothing 6.,ne = 107%;8,10ss = 1073
Stopping rule || — ¢(Mm-Vl < 1073

Initialization
Step size

Line search

11.5

Fig 2. Cone test problem. a) True object, b) Noisy DIC color image taken at
angle 7o = 0" and SNR = 4.5, ¢) Reconstructed phase.
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Fig 3. Cross test problem. a) True object, b) Noisy DIC color image taken at
angleto = 0" and SNR = 4.5, ¢) Reconstructed phase.

® For the cone, the relative error is below 6% in the most
noisy case.

® For the cross, the shape is well-recovered, as well as the
phase difference.

® In both cases, the proposed approach seems to be quite
robust to noise.

Discussion

Comparison with the Barzilai-Borwein rule:

4BB1 — (™) — ¢(m_1))T(¢(m) — ¢p(m~1) (8)
" (@M = pmmIT(V] (M) — V] (pM—D))
Error: ||¢p™) — ¢* — cl1||/ll¢p*|| where @™ is the true object,
1 is the vector of all ones and ¢ = Z[d)(m)(X) —¢*(x)]/N.
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Fig 4. Relative error versus the number of iterations; a) Cone; b) Cross

® The proposed choice for the step size outperforms signi
ficantly the standard BB1 approach, in terms of effi-
ciency, accuracy and robustness to noise.

® BB1recovers a coarse estimate in 500 iterations, while
our approach provides an error below 10% in roughly

300 iterations.

® The number of iterations is reduced of nearly 50%.

‘Conclusions A

Numerical experience showed that:

© The method is robust with respect to the presence of
high rates of noise.

© It overcomes the assumption of no previous knowledge
of the initial guess.

O It provides very good estimations in less iterations than
a standard gradient descent method.

® The computational time is significantly reduced thanks
to our convolution-based formulation.

Future Work

@ Verify the proposed method on real experimental
iImages.

o Consider different formulations of problem (3), e.g. by
doing change of variables

N0 .
u = e JT subjectto

Jull=1

o /

References

[1]Lin W., Yu S,, and Lin S., “Accelerating phase shifting technique in quanti-
tative differential interference contrast system for critical dimension
measurement of TFT substrate,” SID Int. Symp. Dig. Tec., vol. 43, no. 1,
2012.

[2]Bostan E., Froustey E., Rappaz B., Shaffer E., Sage D., and Unser M.,
“Phase retrieval by using transport-ofintensity equation and differential
interference contrast microscopy,” in Proc. 21th IEEE International Confe-
rence on Image Processing, 2014, pp. 3939-3943.

[3]Preza C., “Rotational-diversity phase estimation from differential interfe-
rence contrast microscopy images,” J. Opt. Soc. Am. A, vol. 17, no. 3, pp.
415—424, 2000.

[4]R. Fletcher, “A limited memory steepest descent method,” Math. Pro-
gram., vol. 135, no. 1-2, pp. 413—436, 2012.

Acknowledgements

This work has been supported by the ECOS-Nord grant Ci5Mo1, the Universidad Indus-
trial de Santander and the Italian GNCS - INAAM

-
Inaustr :?'El:f:f
" i i i i

|'-;.-_ e ! P
| F"'.Tl'l =1
sl TRl ST




