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STATEMENT OF THE PROBLEM
Constrained least squares problem

min
x∈Ω

f(x) =
1

2
‖Ax− b‖22

. A ∈ Rm×n, x ∈ Rn, b ∈ Rm

. m ≤ n, n very large, Aij ≥ 0, A not in memory
(only matrix-vector operators involving A and AT available)

. Ω ⊂ Rn, nonempty closed convex set defined by simple constraints
l

non-expensive O(n) projection onto Ω

simple
constraints

simple
constraints

æ l ≤ x ≤ u

æ l ≤ x ≤ u ∧wTx = c

æ l ≤ x ≤ u ∧wTx ≤ ρ

Target imaging applications:

• fiber orientation from dif-
fusion MRI data;

• tomography

NON-SCALED STATE OF THE ART APPROACHES

Gradient Projection (GP)
[Birgin-Martínez-Raydan, SIAM J.Optim., 2000]

x(k+1) = x(k) + λk(PΩ(x(k) − αk∇f(x(k)))− x(k))

Step-length selection αk: recent rules based on Ritz-like values overcome popular
Barzilai-Borwein rules [Fletcher, Math. Program., 2012], [Porta-Prato-Zanni, J. Sci. Comp., 2015]

Gradient Projection with extrapolation (GP_Ex)

x(k+1) = PΩ(y(k) − α∇f(y(k))),

y(k) = x(k) + βk(x(k) − x(k−1))

Suitable choices for the βk parameter: [Bertsekas, Convex Opt.Theory, 2009],

[Beck-Teboulle, SIAM J. Imaging Sci., 2009]

ACCELERATION STRATEGY

Exploit scaled gradient directions

dk = −Dk∇f(x(k)) , Dk ∈ Dρk

where Dρk is the set of symmetric positive definite

matrices with eigenvalues τ (k)
j s. t. 0 < 1

ρk
≤ τ (k)

j ≤ ρk

Diagonal scaling matrix: the updating rule

Dk = diag

(
max

{
1

ρk
,min

{
ρk,

x(k)

ATAx(k)
,

}})

where ρk =

√
1 +

γ

kp
with γ > 0 and p > 2

SCALED GP (SGP) ALGORITHM

Initialize: x(0) ∈ Ω, ε > 0, δ, σ ∈ (0, 1), α0 > 0, D0 ∈ Dρ0
for k = 0, 1, . . . ,

d(k) = P
Ω,D−1

k

(
x(k) − αkDk∇f(x(k))

)
− x(k)

(scaled gradient projection step)

λk = 1

while f(x(k) + λkd
(k)) > f(x(k)) + σλk∇f(x(k))Td(k)

λk = δλk (backtracking step)
end

x(k+1) = x(k) + λkd
(k)

if ‖x(k+1) − x(k)‖ ≤ ε‖x(k)‖, break; end

define the diagonal scaling matrix Dk+1 ∈ Dρk+1

(scaling updating rule)

define the step-length αk+1 (step-length updating rule)
end

SCALED GP_EX ALGORITHM

Initialize: x(0) ∈ Rn, ε > 0,y(0) = x(0), 0 < δ < 1, a > 2,

α0 > 0, D0 ∈ Dρ0
for k = 0, 1, . . . ,

1. x(k+1) = P
Ω,D−1

k

(
y(k) − αkDk∇f(y(k))

)
(scaled gradient proj. step)

if f(x(k+1)) > f(y(k)) +∇f(y(k))T (x(k+1) − y(k))

+ 1
2αk
‖x(k+1) − y(k)‖2

D−1
k

αk = δαk; goto 1.; (backtracking step)
end
if ‖x(k+1) − x(k)‖ ≤ ε‖x(k)‖, break; end

βk+1 = k
k+1+a

; αk+1 = αk;

y(k+1) = x(k+1) +βk+1

(
x(k+1) − x(k)

)
(extrapolation step)

define the diagonal scaling matrix Dk+1 ∈ Dρk+1

(scaling updating rule)
end

CONVERGENCE ANALYSIS
SGP method

. Let f be convex

. Let the solution set X∗ be not empty

. ∇f globally Lipschitz on Ω

. αk ∈ [αmin, αmax], 0 < αmin ≤ αmax

é

x(k) k→∞−−−−→ x∗

x∗ ∈ X∗

f (k) − f∗ = O
(

1

k

)
[Bonettini-Prato, Inverse Problems, 2015]

Scaled GP_Ex method

. Let f be convex

. Let the solution set X∗ be not empty

. ∇f Lipschitz continuous on Ω

é

x(k) k→∞−−−−→ x∗

x∗ ∈ X∗

f (k) − f∗ ≤ C

(k − 1 + a)2

[Bonettini-Porta-Ruggiero, SIAM J. Sci. Comput., 2016]

NUMERICAL RESULTS
Estimating the fibre orientation from diffusion MRI data
Let V be the number of voxels into a brain region
• Voxel-by-voxel approach: solve V minimization problems

min
x(v)

1

2

∥∥Φm×nx
(v) − b(v)

∥∥2

2
sub. to x(v) ≥ 0 ,

∥∥x(v)
∥∥

0
≤ k

(m = 15, n = 201, k = 3, V = 16× 16× 5)

• Whole region approach [Auría-Daducci-Thiran-Wiaux, NeuroIm., 2015]

exploit voxelwise sparsity + spatial coherence in neighbour voxels
é reweighted `1-minimization scheme: solve a sequence of pb. of type

min
X

1

2

∥∥ΦM×NX −B
∥∥2

2
sub. to X ≥ 0 ,

∥∥X∥∥
W,1
≤ K

pr

– M = m · V = 19200

– N = n · V = 257280

– K = k · V = 3840

–
∥∥X∥∥

W ,1
=
∑N
i=1Wi|Xi| , Wi > 0

Implementation details

To generate the dictionary Φ in our experiments, we estimated two
different Gaussian kernels that model the diffusion signal in the regions
of the brain corresponding to (i) white matter (WM) and (ii) partial
volume with grey matter or cerebrospinal fluid (CSF). Modelling each
kernel actually corresponds to estimating the three eigenvalues of the
diffusion tensor. Grey matter and CSF are typically isotropic media.
Consequently, their representative kernel is spherical – a tensor with
three equal eigenvalues – and not sensitive to rotations. On the other
hand, the kernel corresponding to the WM is anisotropic. Its response
function was first estimated by fitting a tensor from the diffusion signal
in those voxels with the highest fractional anisotropy (as expected to
contain only one fibre population) and subsequently it was rotated in
200 different directions equally distributed on the sphere. Therefore,
the final number of atoms of the dictionary used for this reconstruction
is 201: 200 atoms corresponding to WM plus 1 isotropic atom
modelling partial volume with CSF and grey matter.

Each weighted-‘1 problem of the form (5) is solved using Douglas–
Rachford algorithm (Combettes and Pesquet, 2007) in the context of
proximal splitting theory (Combettes and Pesquet, 2011). To set a
meaningful bound Kwe have followed the criterion that at convergence
the weighted-‘1 norm of a matrix, as defined in Section 2.2, mimics the
‘0 norm – as in formulation (3). K is then heuristically fixed as K= 3 N,

as it represents a conservative bound on the total number of fibre orien-
tations to be identified, computed as the number of voxels N times an
average bound on the number of fibre orientation per voxel. We
initialise τ(0) as the variance of the solution after the first iteration X(0)

and, in subsequent iterations, we update τ(t + 1) = βτ(t) with β =
10−1. Ideally τ(t) should decrease to 0 but we heuristically fix a lower
bound τthr = 10−7, above which significant signal components could
be identified. Experiments show that for a convergence bound v =
10−3 the reweighting process stops after a relatively small number of
iterations, typically 4 or 5. In our simulations, v is set to 10−3 and Nmax

to 10.
To extract the final fibre directions from the solution to Algorithm 1

in every voxel we perform a search for local maxima among all direc-
tions within a cone of 15° around every direction. In this entire process,
we disregard the directionswith contributions (i.e. coefficients) smaller
than 10% of the maxima in order to filter out spurious peaks.

Phantom data

We perform our experiments using the phantom data used for the
HARDI reconstruction Challenge 2012 (Daducci et al., 2014a). The public
results in (Daducci et al., 2014a) allow us to compare the performance
of L2L0NW with other methods using different spatial regularisation
schemes – such as TV regularisation mentioned above – with no need
for their explicit implementation. The dataset is a 16 × 16 × 5 volume
that comprises 5 different fibre bundles that result in voxels with bend-
ing, crossing and kissing tracts. The response function of each bundle
has been generated with a fractional anisotropy between 0.75 and
0.90 and the diffusion properties are constant along all its trajectory.
More details on its geometry can be found in Daducci et al. (2014a).
The signal is contaminated with Rician noise (Gudbjartsson and Patz,
1995) as follows:

Snoisy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sþ ξ1ð Þ2 þ ξ2ð Þ2

q
; ð8Þ

withξ1; ξ2∼N 0;σ2" #
andσ= S0/SNR corresponding to a given signal-to-

noise ratio (SNR) on the S0 image. The quality of the reconstructions has
been evaluated as a function of three different noise levels, i.e. SNR =
10, 20, 30 and 5 different q-space acquisition schemes (30, 20, 15, 10
and 6 samples), evenly spaced on half of the unit sphere.

Fig. 2. Top row: Schematic representation of a spatial neighbourhood. On the left: Set of voxels representing the 3D-volume (brain) we want to solve for. Voxels in red configure the
neighbourhoodN vð Þ for a particular voxel v, in green. On the right: Mapping ofN vð Þ as a set of columns of matrix X. Bottom row: Schematic representation of an angular neighbourhood.
On the left: Set of black circles representing the discretisation of the half sphere chosen to build dictionaryΦ. Points highlighted in blue configure the neighbourhoodN dð Þ for a particular
direction d, in green. On the right: Mapping of N dð Þ as a set of rows of matrix X.

Fig. 3. Schematic representation of the neighbourhood of element Xdv (in green), i.e. the
elements of X involved in the computation of weight Wdv. It includes coefficients corre-
sponding to directions d and all its neighbours N dð Þ for voxel v and all its neighbours

N dvð Þ ¼ d0; v0
" #

; d0∈N dð Þ; v0∈N vð Þ
n o

.
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; d0∈N dð Þ; v0∈N vð Þ
n o
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where the matrix Y ∈ ℝm × N is formed by the concatenation of all N
measurement column vectors: Y⋅v = y(v) ∈ ℝm. The sensing matrix Φ
is exactly the same as in Eq. (4) and ‖. ‖W,1 stands for a weighted ‘1
norm of a matrix defined as:

Xk kW;1 ¼
X

d;v

Wdv Xdvj j: ð6Þ

The following paragraphs are devoted to describe in detail the
reweighting scheme and define the weighting matrix W.

In a reweighted-‘1 scheme, large weights will progressively tend to
discouragenonzero entrieswhereas small weightswill promotenonzero
entries in the solution. TheweightingmatrixWhas the samedimension
as X and each of its entries acts as a weight for the corresponding entry
of X. Theweights should still represent the inverse value of the associat-
ed entry at the previous iteration, so as to lead to an ‘0-norm prior at
convergence. However, a strong spatial coherence prior can actually
be promoted by adapting the computation of the weights as follows.
Our definition of the weights is driven by the underlying anatomical
assumption that fibre bundles in neighbouring voxels should have
very close orientations as the trajectories are smooth (schematically
represented in Fig. 1). In terms of the FOD, this premise implies that
neighbour voxels should bear similar directions.

To translate this idea into amathematical formulation of theweights
we start by formally defining the concept of neighbourhood. Since each
atom of the dictionary represents a direction d on the half sphere, we
define an angular neighbourhood N dð Þ for each of them composed by
the closest atoms (in terms of angular distance). In our implementation
we have considered a maximal angular distance of 15° to delimit the
neighbourhood of each atom. Analogously, for each voxel v of the
brain we define its spatial neighbourhood N vð Þ as the group of
26 voxels that share either a face, an edge or a vertex with the voxel
of interest v, commonly referred to as the 26-adjacent neighbourhood
(Huang et al., 1998). A visual representation of both N dð Þ and N vð Þ is
shown in Fig. 2. For convenience, we defineN dð Þ ¼ d∪N dð ÞandN vð Þ ¼
v∪N vð Þ, the neighbourhoods that include the central element. We then
define the neighbourhood of an element Xdv as the entries of X at the in-
tersection of rows d and all its neighbour directions, and columns v and

all its neighbour voxels: N dvð Þ ¼ d0; v0
! "

; d0∈N dð Þ; v0∈N vð Þ
n o

, as it is

schematically represented in Fig. 3.

At each iteration, every element of theweightingmatrixWdv is set as
the inverse of an average of the absolute values that X takes in the
neighbourhood of Xdv in the previous iteration:

W tþ1ð Þ
dv ¼ τ tð Þ þ 1

jN vð Þj

X

d0v0∈N dvð Þ

jX tð Þ
d0v0

j

2

4

3

5
−1

: ð7Þ

Consequently, at each iteration t, the weighting matrix W(t) repre-
sents a blurred version of the current estimation of the solution X(t).1

In Eq. (7), we average over voxels, but sum over directions as all values
in neighbour directions are interpreted as contributing to a single true
local direction, in particular because the true direction does in general
not coincide exactly to one of the discrete points of the sphere identify-
ing our orientation dictionary. This helps to stabilise the regularisation
and prevent the appearance of spurious peaks: fibre contributions are
usually spread over a small angular support while spurious peaks are
associated with isolated directions. To avoid infinite values for null
averages, we add a stability parameter τ in the definition of theweights.
We apply a homotopy strategy (Nocedal and Wright, 2006) and use a
decreasing sequence {τ(t)} in such a way that τ(t) → 0 when t → ∞. In
the absence of any spatial constraint, W(0) corresponds to the matrix
of all 1 s and thus, the weighted ‘1 norm is the standard ‘1,1 norm of a
matrix, ‖X‖W,1 = ‖X‖1,1.

The specific computation of the weights described in the former
paragraphs encourages that neighbour voxels present the same or
very close (neighbour) directions, imposing structured sparsity of the
solution. Indeed, all entries corresponding to the neighbourhood of an
element contribute to its weight. Therefore those orientations that are
“supported” by the surrounding voxels are reinforced, since they will
be given a small weight compared to isolated directions that are not
coherent with their environment. At convergence, our definitions
(6) and (7) thus implement a spatially coherent version of the matrix
‘0 norm, i.e. the sum of the ‘0 norms of its columns. This reweighting
scheme promotes a regularisation that takes into account the true
anatomyof the brain accounting for the fact thatfibrepopulations present
a coherent trajectory across voxels close to each other in the brain vol-
ume. This prior constitutes a powerful constraint that cannot be exploited
when solving the problem independently for each voxel, like in Eq. (4).

The main steps of the reweighting scheme are reported in
Algorithm 1; in the remaining of the manuscript we will refer to it as
L2L0NW, in reference to the described neighbour weighted scheme. The
reweighting process stops when the relative variation between succes-
sive solutions ‖X(t) − X(t − 1)‖2/‖X(t − 1)‖2 is smaller than some bound
or after the maximum number of iterations allowed is reached.

Algorithm 1. Reweighted ‘1 minimisation for global reconstruction of
the FOD

Fig. 1. Synthetic FOD field in a representative 2D slice, which consists of two crossing fibre
bundles. Due to the natural smoothness of the bundles, FODs in neighbouring voxels are
expected to contain similar peaks, as highlighted in the figure.

1 The values of the final solution are influenced by their weights, however they are not
directly identified with them.
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GP_Ex GP Scaled GP_Ex SGP
iterations 649 589 390 365
seconds 19.61 24.19 9.38 12.73
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Err :=
∥∥ΦM×NX −B

∥∥
2
−

∥∥ΦM×NX∗ −B
∥∥
2

, where X is the approximated solution and
X∗ is a ground–truth, obtained by executing GP_Ex with very high accuracy.

WORKS IN PROGRESS

ä application to Computed Tomography data [Jensen-Jørgensen-Hansen-Jensen, BIT Numer. Math, 2012]

ä performance comparisons with different scaling rules in literature [Bonettini-Chiuso-Prato, SIAM J. Sci. Comp., 2015],
[Hager-Mair-Zhang, Math. Program., 2009]

ä derivation of new scaling strategies (extension to box constraints)

REFERENCES

[1] Auría A., Daducci A., Thirana J.-P. and Wiaux, Y., Structured spar-
sity for spatially coherent fibre orientation estimation in diffusion MRI,
Neuroimage, (2015)

[2] Bonettini S., Porta F. and Ruggiero V., A variable metric inertial method
for convex optimization, SIAM Journal of Scientific Computing, (2016)

[3] Bonettini S. and Prato M., New convergence results for the scaled gradi-
ent projection method, Inverse Problems, (2015)

[4] Porta F., Prato M. and Zanni L., A new steplength selection for scaled
gradient methods with application to image deblurring, Journal of Scien-
tific Computing, (2015)


