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Abstract

It is well known that there is a strong connection between time integration and convex optimization. In this work, inspired by the equivalence
between the forward Euler scheme and the gradient descent method, we broaden our analysis to the family of Runge-Kutta methods and show
that they enjoy a natural interpretation as first-order optimization algorithms. The strategies intrinsically suggested by Runge-Kutta methods are
exploited in order to detail novel proposal for scaling gradient-like approaches.

Framework

Constrained optimization problem

min
x≥0

f (x) (1)

◮f is a continuously differentiable and convex function;

◮ the equilibrium points of
dx

dt
= −∇f (x(t))

are the unconstrained minimizers of f .

Two–metric projection method

xℓ+1 = P{x≥0}

(

xℓ − αℓMℓ∇f (xℓ)
)

(2)

◮αℓ is chosen by means of the Armijo along-the-arc line-search strategy;
◮Mℓ is symmetric, positive definite (s.d.p.) and, given ǫ > 0, diagonal
with respect to the subset of indexes

I+
ǫ (xℓ) =

{

i
∣

∣

∣
0 ≤ x

(i)
ℓ ≤ ǫ,

∂f(xℓ)

∂x
(i)
ℓ

> 0

}

Runge–Kutta methods for a special case

If applied to the gradient flow problem
dx

dt
= −(Ax− b) with A ∈ R

n×n s.p.d., classical Euler methods for ODE can be written as follows:

xℓ+1 = xℓ − h(Axℓ − b) Forward Euler

xℓ+1 = xℓ − h
(

I − h
2A

)

(Axℓ − b) Midpoint

xℓ+1 = xℓ − h
(

I − h
2A + 1

6h
2A2 − 1

24h
3A3

)

(Axℓ − b) Fourth-order Runge-Kutta

xℓ+1 = xℓ − h(I + hA)−1(Axℓ − b) Backward Euler

where, for the explicit methods, h has to be chosen in the proper stability region, while for the implicit algorithms there is no limitations on h.

Remark. All the scaling matrices which appear in the previous algorithms can be viewed as approximation of the filtered or regularized inverse of A,
namely the matrix (I − e−hA)A−1. Therefore these methods are suited for inverse problems.

Runge–Kutta-like two–metric projection algorithms

We propose a new idea for selecting Mℓ in the two–metric projection method applied to (1) by starting from the following matrices

DERK
ℓ (h) = h

(

I − h
2∇

2f (xℓ)
)

=
(

hI − h2

2∇
2f (xℓ)

)

DIRK
ℓ (h) = h

(

I + h∇2f (xℓ)
)−1

=
(

h−1I +∇2f (xℓ)
)−1

where in the first case h is fixed such that DERK
ℓ (h) is positive definite. We make them partly diagonal by introducing two diagonal matrices Eℓ and

Fℓ [1] such that

(Eℓ)ii =

{

1 i /∈ I+
ǫ (xℓ)

0 i ∈ I+
ǫ (xℓ)

and Fℓ = I −Eℓ .

Then possible scaling matrices diagonal with respect to I+
ǫ (xℓ) which can be employed for (2) are given by Mℓ = EℓBℓEℓ + Fℓ where Bℓ can be

selected as either DERK
ℓ (h) or DIRK

ℓ (h). These choices for the scaling matrix exploit second derivatives information as in the quasi-Newton
approaches; however the presence of the penalty terms hI or h−1I makes our definitions more stable as confirmed by the numerical results
obtained in imaging problems under Poisson noise and offered in the following.

Image formation process: an inverse problem

y = Hx + b + η

◮y ∈ R
n: observed data; ◮ x ∈ R

n: image to be recovered;

◮H ∈ R
n×n: burring matrix; ◮ b ∈ R

n: background;

◮η ∈ R
n: Poisson noise corrupting the data.

Image restoration: optimization problem

min
x≥0

N
∑

i=1

{

yi ln
yi

(Hx + b)i
+ (Hx + b)i − yi

}

Since H is a BCCB matrix, it can be factorized as

H = F ∗
ΛF , where F is the 2D DFT, and the descent

direction can be computed through the FFT.

Numerical results: comparison with SGP method [2]

Dataset

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Time (s)

O
bj

ec
tiv

e 
fu

nc
tio

n

 

 

SGP                  

IRK−2Met             

ERK−2Met             

Projected Newton     

10
0

10
1

10
2

10
3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Time (s)

R
R

E

 

 

SGP                  

IRK−2Met             

ERK−2Met             

Projected Newton     

Performance of the compared algorithms

Algorithm (2) with either DERK
ℓ ERK-2Met or DIRK

ℓ IRK-2Met shows good and stable

performance.
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