Optimization methods for phase estimation in differential-interference-contrast (DIC) microscopy

Simone Rebegoldi ${ }^{1}$, Lola Bautista ${ }^{2,3}$, Laure Blanc-Féraud ${ }^{3}$, Marco Prato ${ }^{1}$, Luca Zanni ${ }^{1}$ and Arturo Plata ${ }^{2}$
${ }^{1}$ Università di Modena e Reggio Emilia, ${ }^{2}$ Universidad Industrial de Santander, ${ }^{3}$ Université Côte d'Azur

The DIC phase estimation problem

Abstract

The DIC image is formed by the interference of two orthogonally polarized beams that have a lateral displacement (called shear) and are phase shifted relatively one to each other. The resulting image has a 3D high contrast appearance, which can be enhanced by introducing a uniform phase difference between the beams (called bias).

Model: the DIC image formation is described by the polychromatic rotational-diversity model [1,2]

$$
\left(o_{k, \lambda_{\ell}}\right)_{j}=\left|\left(h_{k, \lambda_{\ell}} \otimes e^{-i \phi / \lambda_{\ell}}\right)_{j}\right|^{2}+\left(\eta_{k, \lambda_{\ell}}\right)_{j}, \quad k=1, \ldots, K, \ell=1,2,3, j \in \chi
$$

- k is the index of the rotation of the specimen w.r.t. the horizontal axis, ℓ is the index denoting one of the RGB channels and $j=\left(j_{1}, j_{2}\right)$ is a 2D-index varying in the set $\chi=\{1, \ldots, M\} \times\{1, \ldots, P\}$
- λ_{ℓ} is the ℓ-th illumination wavelength
- $o_{k, \lambda_{\ell}} \in \mathbb{R}^{M P}$ is the ℓ-th color component of the k-th observed image $o_{k}=\left(o_{k, \lambda_{1}}, o_{k, \lambda_{2}}, o_{k, \lambda_{3}}\right) \in \mathbb{R}^{M P \times 3}$
$\bullet \phi \in \mathbb{R}^{M P}$ is the unknown phase vector and $e^{-i \phi / \lambda_{l}} \in \mathbb{C}^{M P}$ is defined by $\left(e^{-i \phi / \lambda_{l}}\right)_{j}=e^{-i \phi_{j} / \lambda_{l}}$
- $h_{k, \lambda_{\ell}} \in \mathbb{C}^{M P}$ is the discretization of the continuous DIC Point Spread Function
- $\eta_{k, \lambda_{\ell}} \in \mathbb{R}^{M P}$ is the noise corrupting the data, $\eta_{k, \lambda_{\ell}} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} I_{(M P)^{2}}\right)$.

Problem: given the rotationally diverse images o_{1}, \ldots, o_{K}, retrieve the phase vector ϕ by solving

$$
\begin{equation*}
\min _{\phi \in \mathbb{R}^{N^{P}}} J(\phi) \equiv J_{0}(\phi)+J_{T V}(\phi), \tag{P}
\end{equation*}
$$

- $J_{0}(\phi)=\sum_{\ell=1}^{3} \sum_{k=1}^{K} \sum_{j \in \chi}\left[\left(o_{k, \lambda_{\ell}}\right)_{j}-\left|\left(h_{k, \lambda_{\ell}} \otimes e^{-i \phi / \lambda_{\ell}}\right)_{j}\right|^{2}\right]^{2}$ is the nonconvex least-squares term
- $J_{T V}(\phi)=\mu \sum_{j \in \chi} \sqrt{\left((\mathcal{D} \phi)_{j}\right)_{1}^{2}+\left((\mathcal{D} \phi)_{j}\right)_{2}^{2}+\delta^{2}}$ is the total variation (TV) functional, where $\mu>0$ is the
regularization parameter and $\delta \geq 0$ is the smoothing parameter $(\delta=0 \rightarrow$ standard TV).

Optimization methods

Case $\delta>0$: problem (P) is differentiable \rightarrow we use a gradient-descent method.
Algorithm 1 Limited Memory Steepest Descent (LMSD) method [3] Set $\rho, \omega \in(0,1), m>0, \alpha_{0}^{(0)}, \ldots, \alpha_{m-1}^{(0)}>0, \phi^{(0)} \in \mathbb{R}^{M P}, G=[], \Theta=[], n=0$. WHILE True

FOR $/=1, \ldots, m$

1. Compute the smallest non-negative integer i_{n} such that $\alpha_{n}=\alpha_{n}^{(0)} \rho^{i_{n}}$ satisfies $J\left(\phi^{(n)}-\alpha_{n} \nabla J\left(\phi^{(n)}\right)\right) \leq J\left(\phi^{(n)}\right)-\omega \alpha_{n}\left\|\nabla J\left(\phi^{(n)}\right)\right\|^{2}$
2. Compute the new point as $\phi^{(n+1)}=\phi^{(n)}-\alpha_{n} \nabla J\left(\phi^{(n)}\right)$.
3. Update $G=\left[\begin{array}{ll}G & \nabla J\left(\phi^{(n)}\right)\end{array}\right]$ and $\Theta=\left[\begin{array}{ll}\theta & \alpha_{n}^{-1}\end{array}\right]$.
4. Set $n=n+1$.

END
6. Define the $(m+1) \times m$ matrix $\Gamma=\left[\begin{array}{c}\operatorname{diag}(\Theta) \\ \operatorname{zeros}(1, m)\end{array}\right]-\left[\begin{array}{c}\operatorname{zeros}(1, m) \\ \operatorname{diag}(\Theta)\end{array}\right]$.
7. Compute the Cholesky factorization $R^{\top} R$ of the $m \times m$ matrix $G^{\top} G$.
8. Solve the linear system $R^{T} r=G^{T} \nabla J\left(\phi^{(n)}\right)$.
9. Define the $m \times m$ matrix $\Phi=[R, r] \Gamma R^{-1}$ and its approximation

$$
\widetilde{\Phi}=\operatorname{diag}(\Phi)+\operatorname{tril}(\Phi,-1)+\operatorname{tril}(\Phi,-1)^{\top},
$$

which is symmetric and tridiagonal.
10. Compute eigenvalues $\theta_{1}, \ldots, \theta_{m}$ of $\widetilde{\Phi}$ and define $\alpha_{n+i-1}^{(0)}=1 / \theta_{i}, i=1, \ldots, m$.

END
Case $\delta=0$: problem (P) is non differentiable \rightarrow we use a proximal-gradient method.
Algorithm 2 Inexact Linesearch based Algorithm (ILA) [4]
Set $\rho, \omega \in(0,1), 0<\alpha_{\text {min }} \leq \alpha_{\text {max }}, \tau>0, \phi^{(0)} \in \mathbb{R}^{M P}, n=0$.

WHILE True

1. Set $\alpha_{n}=\max \left\{\min \left\{\alpha_{n}^{(0)}, \alpha_{\max }\right\}, \alpha_{\text {min }}\right\}$, where $\alpha_{n}^{(0)}$ is chosen as in Algorithm 1.
2. Let $\psi^{(n)}=\operatorname{prox}_{\alpha_{n} J_{T V}}\left(\phi^{(n)}-\alpha_{n} \nabla J_{0}\left(\phi^{(n)}\right)\right)=\operatorname{argmin}_{\phi \in \mathbb{R}^{M P}} h^{(n)}(\phi)$.

Compute $\tilde{\psi}^{(n)}$ such that $h^{(n)}\left(\tilde{\psi}^{(n)}\right)-h^{(n)}\left(\psi^{(n)}\right) \leq \epsilon_{n}$ and $0 \leq \epsilon_{n} \leq-\tau h^{(n)}\left(\tilde{\psi}^{(n)}\right)$.
3. Set $d^{(n)}=\tilde{\psi}^{(n)}-\phi^{(n)}$.
4. Compute the smallest non-negative integer i_{n} such that $\lambda_{n}=\rho^{i_{n}}$ satisfies

$$
J\left(\phi^{(n)}+\lambda_{n} d^{(n)}\right) \leq J\left(\phi^{(n)}\right)+\omega \lambda_{n} h^{(n)}\left(\tilde{\psi}^{(n)}\right) .
$$

5. Compute the new point as $\phi^{(n+1)}=\phi^{(n)}+\lambda_{n} d^{(n)}$.
6. Set $n=n+1$.

END

Convergence and numerical results

Convergence: Any limit point of Algorithm 1 and 2 is stationary for problem (P). Since J satisfies the Kurdyka-Łojasiewicz property, Algorithm 1 converges to a limit point; the same result can be proved for Algorithm 2 when the proximal point is computed exactly [4]. Results: for both objects, cone (top row) and cross (bottom row), $K=2$ DIC images have been generated.

The parameters of the methods have been tuned as follows: $\rho=0.5$, $\omega=10^{-4}, m=4, \alpha_{\min }=10^{-5}, \alpha_{\max }=10^{2}, \tau=10^{6}-1, \phi^{(0)}=0$. The methods are compared with the Polak-Ribière conjugate gradient method equipped with the strong Wolfe conditions ($\mathrm{PR}^{+}-\mathrm{SW}$) and a linesearch based on polynomial approximation (PR-PA) [1].

