Optimization methods for phase estimation in differential-interference-contrast (DIC) microscopy

Simone Rebegoldi¹, Lola Bautista^{2,3}, Laure Blanc-Féraud³, Marco Prato¹, Luca Zanni¹ and Arturo Plata²

¹Università di Modena e Reggio Emilia, ²Universidad Industrial de Santander, ³Université Côte d'Azur

The DIC phase estimation problem

The DIC image is formed by the interference of two orthogonally polarized beams that have a lateral displacement (called shear) and are phase shifted relatively one to each other. The resulting image has a 3D high contrast appearance, which can be enhanced by introducing a uniform phase difference between the beams (called bias).

Model: the DIC image formation is described by the polychromatic rotational-diversity model [1,2]

$$(o_{k,\lambda_\ell})_j = \left| (h_{k,\lambda_\ell} \otimes e^{-i\phi/\lambda_\ell})_j \right|^2 + (\eta_{k,\lambda_\ell})_j, \quad k = 1,\ldots,K, \ \ell = 1,2,3, \ j \in \chi$$

- k is the index of the rotation of the specimen w.r.t. the horizontal axis, ℓ is the index denoting one of the RGB channels and $j = (j_1, j_2)$ is a 2D-index varying in the set $\chi = \{1, \ldots, M\} \times \{1, \ldots, P\}$
- λ_{ℓ} is the ℓ -th illumination wavelength

• $o_{k,\lambda_{\ell}} \in \mathbb{R}^{MP}$ is the ℓ -th color component of the k-th observed image $o_k = (o_{k,\lambda_1}, o_{k,\lambda_2}, o_{k,\lambda_3}) \in \mathbb{R}^{MP imes 3}$ • $\phi \in \mathbb{R}^{MP}$ is the unknown phase vector and $e^{-i\phi/\lambda_{\ell}} \in \mathbb{C}^{MP}$ is defined by $(e^{-i\phi/\lambda_{\ell}})_i = e^{-i\phi_i/\lambda_{\ell}}$

• $h_{k,\lambda_{\ell}} \in \mathbb{C}^{MP}$ is the discretization of the continuous DIC Point Spread Function • $\eta_{k,\lambda_{\ell}} \in \mathbb{R}^{MP}$ is the noise corrupting the data, $\eta_{k,\lambda_{\ell}} \sim \mathcal{N}(\mathbf{0}, \sigma^2 I_{(MP)^2})$.

Problem: given the rotationally diverse images o_1, \ldots, o_K , retrieve the phase vector ϕ by solving

$$\min_{\phi \in \mathbb{R}^{MP}} J(\phi) \equiv J_0(\phi) + J_{TV}(\phi),$$

•
$$J_0(\phi) = \sum_{\ell=1}^3 \sum_{k=1}^K \sum_{j \in \chi} \left[(o_{k,\lambda_\ell})_j - \left| (h_{k,\lambda_\ell} \otimes e^{-i\phi/\lambda_\ell})_j \right|^2 \right]^2$$
 is the nonconvex least-squares term
• $J_{TV}(\phi) = \mu \sum_{j \in \chi} \sqrt{((\mathcal{D}\phi)_j)_1^2 + ((\mathcal{D}\phi)_j)_2^2 + \delta^2}$ is the total variation (TV) functional, where $\mu > 0$ is the regularization parameter and $\delta \ge 0$ is the smoothing parameter ($\delta = 0 \rightarrow$ standard TV).

Optimization methods

Case $\delta > 0$: problem (P) is differentiable \rightarrow we use a gradient-descent method. **Algorithm 1** Limited Memory Steepest Descent (LMSD) method [3] Set $\rho, \omega \in (0, 1)$, m > 0, $\alpha_0^{(0)}, \ldots, \alpha_{m-1}^{(0)} > 0$, $\phi^{(0)} \in \mathbb{R}^{MP}$, $G = [], \Theta = [], n = 0$. WHILE True

Convergence and numerical results

Convergence: Any limit point of Algorithm 1 and 2 is stationary for problem (P). Since J satisfies the Kurdyka-Łojasiewicz property, Algorithm 1 converges to a limit point; the same result can be proved

 (P)

FOR I = 1, ..., m

1. Compute the smallest non-negative integer i_n such that $\alpha_n = \alpha_n^{(0)} \rho^{i_n}$ satisfies

 $J(\phi^{(n)} - \alpha_n \nabla J(\phi^{(n)})) \leq J(\phi^{(n)}) - \omega \alpha_n \|\nabla J(\phi^{(n)})\|^2.$

2. Compute the new point as $\phi^{(n+1)} = \phi^{(n)} - \alpha_n \nabla J(\phi^{(n)})$.

3. Update $G = [G \ \nabla J(\phi^{(n)})]$ and $\Theta = [\Theta \ \alpha_n^{-1}]$.

4. Set n = n + 1.

END

6. Define the $(m+1) \times m$ matrix $\Gamma = \begin{bmatrix} \operatorname{diag}(\Theta) \\ \operatorname{zeros}(1,m) \end{bmatrix} - \begin{bmatrix} \operatorname{zeros}(1,m) \\ \operatorname{diag}(\Theta) \end{bmatrix}$. 7. Compute the Cholesky factorization $R^T R$ of the $m \times m$ matrix $G^T \overline{G}$. 8. Solve the linear system $R^T r = G^T \nabla J(\phi^{(n)})$.

9. Define the $m \times m$ matrix $\Phi = [R, r]\Gamma R^{-1}$ and its approximation

 $\widetilde{\Phi} = \operatorname{diag}(\Phi) + \operatorname{tril}(\Phi, -1) + \operatorname{tril}(\Phi, -1)^T$

which is symmetric and tridiagonal.

10. Compute eigenvalues $\theta_1, \ldots, \theta_m$ of Φ and define $\alpha_{n+i-1}^{(0)} = 1/\theta_i$, $i = 1, \ldots, m$. END

Case $\delta = 0$: problem (P) is non differentiable \rightarrow we use a proximal-gradient method. Algorithm 2 Inexact Linesearch based Algorithm (ILA) [4]

for Algorithm 2 when the proximal point is computed exactly [4]. **Results:** for both objects, cone (top row) and cross (bottom row), K = 2 DIC images have been generated.

Noisy DIC image Rec. phase True phase The parameters of the methods have been tuned as follows: $\rho = 0.5$, $\omega = 10^{-4}, \ m = 4, \ \alpha_{\min} = 10^{-5}, \ \alpha_{\max} = 10^{2}, \ \tau = 10^{6} - 1, \ \phi^{(0)} = 0.$ The methods are compared with the Polak-Ribière conjugate gradient method equipped with the strong Wolfe conditions (PR+-SW) and a linesearch based on polynomial approximation (PR-PA) [1].

Set $\rho, \omega \in (0, 1)$, $0 < \alpha_{\min} \leq \alpha_{\max}$, $\tau > 0$, $\phi^{(0)} \in \mathbb{R}^{MP}$, n = 0.

WHILE True

1. Set $\alpha_n = \max \left\{ \min \left\{ \alpha_n^{(0)}, \alpha_{\max} \right\}, \alpha_{\min} \right\}$, where $\alpha_n^{(0)}$ is chosen as in Algorithm 1. 2. Let $\psi^{(n)} = \operatorname{prox}_{\alpha_n / \tau_V} \left(\phi^{(n)} - \alpha_n \nabla J_0(\phi^{(n)}) \right) = \operatorname{argmin}_{\phi \in \mathbb{R}^{MP}} h^{(n)}(\phi).$ Compute $\tilde{\psi}^{(n)}$ such that $h^{(n)}(\tilde{\psi}^{(n)}) - h^{(n)}(\psi^{(n)}) \leq \epsilon_n$ and $0 \leq \epsilon_n \leq -\tau h^{(n)}(\tilde{\psi}^{(n)})$. 3. Set $d^{(n)} = \tilde{\psi}^{(n)} - \phi^{(n)}$.

4. Compute the smallest non-negative integer i_n such that $\lambda_n = \rho'_n$ satisfies $J(\phi^{(n)} + \lambda_n d^{(n)}) \leq J(\phi^{(n)}) + \omega \lambda_n h^{(n)}(\tilde{\psi}^{(n)}).$ 5. Compute the new point as $\phi^{(n+1)} = \phi^{(n)} + \lambda_n d^{(n)}$.

6. Set n = n + 1.

END

[1] C. Preza, J. Opt. Soc. Am. A, 17(3), 415–424, 2000.

[2] L. Bautista et al., 2016 IEEE 13th Int. Symp. on Biomedical Imaging, 136–139, 2016.

[3] R. Fletcher, Math. Program., 135(1–2), 413–436, 2012.

[4] S. Bonettini et al., ArXiv: 1605.03791, 2016.