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The DIC phase estimation problem

The DIC image is formed by the interference of two orthogonally polarized beams that have a lateral displacement
(called shear) and are phase shifted relatively one to each other. The resulting image has a 3D high contrast
appearance, which can be enhanced by introducing a uniform phase difference between the beams (called bias).

Model: the DIC image formation is described by the polychromatic rotational-diversity model [1,2]
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+ (ηk ,λℓ)j, k = 1, . . . ,K , ℓ = 1, 2, 3, j ∈ χ

• k is the index of the rotation of the specimen w.r.t. the horizontal axis, ℓ is the index denoting one of the RGB
channels and j = (j1, j2) is a 2D–index varying in the set χ = {1, . . . ,M} × {1, . . . ,P}

•λℓ is the ℓ−th illumination wavelength

•ok ,λℓ ∈ R
MP is the ℓ−th color component of the k−th observed image ok = (ok ,λ1

, ok ,λ2
, ok ,λ3

) ∈ R
MP×3

•φ ∈ R
MP is the unknown phase vector and e−iφ/λℓ ∈ C

MP is defined by (e−iφ/λℓ)j = e−iφj/λℓ

•hk ,λℓ ∈ C
MP is the discretization of the continuous DIC Point Spread Function

•ηk ,λℓ ∈ R
MP is the noise corrupting the data, ηk ,λℓ ∼ N (0, σ2I(MP)2).

Problem: given the rotationally diverse images o1, . . . , oK , retrieve the phase vector φ by solving

min
φ∈RMP

J(φ) ≡ J0(φ) + JTV (φ), (P)

• J0(φ) =
3∑
ℓ=1

K∑
k=1

∑
j∈χ

[
(ok ,λℓ)j −

∣∣(hk ,λℓ ⊗ e−iφ/λℓ)j
∣∣2
]2

is the nonconvex least-squares term

• JTV (φ) = µ
∑
j∈χ

√
((Dφ)j)2

1 + ((Dφ)j)2
2 + δ2 is the total variation (TV) functional, where µ > 0 is the

regularization parameter and δ ≥ 0 is the smoothing parameter (δ = 0 → standard TV).

Optimization methods

Case δ > 0: problem (P) is differentiable → we use a gradient-descent method.

Algorithm 1 Limited Memory Steepest Descent (LMSD) method [3]

Set ρ, ω ∈ (0, 1), m > 0, α
(0)
0 , . . . , α

(0)
m−1 > 0, φ(0) ∈ R

MP, G = [ ], Θ = [ ], n = 0.

WHILE True

FOR l = 1, . . . ,m

1. Compute the smallest non-negative integer in such that αn = α
(0)
n ρin satisfies

J(φ(n) − αn∇J(φ(n))) ≤ J(φ(n)) − ωαn‖∇J(φ(n))‖2.

2. Compute the new point as φ(n+1) = φ(n) − αn∇J(φ(n)).
3. Update G = [G ∇J(φ(n))] and Θ = [Θ α−1

n ].
4. Set n = n + 1.

END

6. Define the (m + 1) ×m matrix Γ =

[
diag(Θ)

zeros(1,m)

]
−

[
zeros(1,m)

diag(Θ)

]
.

7. Compute the Cholesky factorization RTR of the m ×m matrix GTG .

8. Solve the linear system RT r = GT∇J(φ(n)).

9. Define the m ×m matrix Φ = [R , r ]ΓR−1 and its approximation

Φ̃ = diag(Φ) + tril(Φ,−1) + tril(Φ,−1)T ,

which is symmetric and tridiagonal.

10. Compute eigenvalues θ1, . . . , θm of Φ̃ and define α
(0)
n+i−1 = 1/θi, i = 1, . . . ,m.

END

Case δ = 0: problem (P) is non differentiable → we use a proximal-gradient method.

Algorithm 2 Inexact Linesearch based Algorithm (ILA) [4]

Set ρ, ω ∈ (0, 1), 0 < αmin ≤ αmax, τ > 0, φ(0) ∈ R
MP, n = 0.

WHILE True

1. Set αn = max
{

min
{
α

(0)
n , αmax

}
, αmin

}
, where α

(0)
n is chosen as in Algorithm 1.

2. Let ψ(n) = proxαnJTV

(
φ(n) − αn∇J0(φ(n))

)
= argminφ∈RMP h(n)(φ).

Compute ψ̃(n) such that h(n)(ψ̃(n)) − h(n)(ψ(n)) ≤ ǫn and 0 ≤ ǫn ≤ −τh(n)(ψ̃(n)).

3. Set d (n) = ψ̃(n) − φ(n).

4. Compute the smallest non-negative integer in such that λn = ρin satisfies

J(φ(n) + λnd
(n)) ≤ J(φ(n)) + ωλnh

(n)(ψ̃(n)).

5. Compute the new point as φ(n+1) = φ(n) + λnd
(n).

6. Set n = n + 1.

END

Convergence and numerical results

Convergence: Any limit point of Algorithm 1 and 2 is stationary
for problem (P). Since J satisfies the Kurdyka- Lojasiewicz property,
Algorithm 1 converges to a limit point; the same result can be proved
for Algorithm 2 when the proximal point is computed exactly [4].
Results: for both objects, cone (top row) and cross (bottom row),
K = 2 DIC images have been generated.

True phase Noisy DIC image Rec. phase

The parameters of the methods have been tuned as follows: ρ = 0.5,
ω = 10−4, m = 4, αmin = 10−5, αmax = 102, τ = 106 − 1, φ(0) = 0.
The methods are compared with the Polak-Ribière conjugate gradi-
ent method equipped with the strong Wolfe conditions (PR+-SW)
and a linesearch based on polynomial approximation (PR-PA) [1].
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Object Algorithm Iterations # f # g Error

Cross

PR–PA 98 997 98 3.63 %
PR+–SW 98 326 326 3.63 %

LMSD 152 221 152 3.64 %
ILA 97 179 97 3.46 %
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