Scaled gradient projection methods for X-rays CT image reconstruction from reduced sampling

V.L. Coli¹, E. Loli Piccolomini², E. Morotti³ and L. Zanni¹

¹University of Modena and Reggio Emilia, ²University of Bologna, ³University of Padova

3d tomography and problem formulation

Modern CT techniques are characterized by few 3d scans, performed by an X-ray source that wheels around the object of interest. Beyond this volume, a digital flat detector captures the X-ray cone beam, gathering 2d projected images. The 3d digital reconstruction of the volume is visually conceived as a stack of many 2d layers, overlaying in a prefixed direction.

The image formation process is modelled as an underdetermined linear system Ax = b where:

- \blacktriangleright x is the unknown volume, discretized in $N:=N_x\times N_y\times N_z$ voxels;
- ▶ b is the collection of all the noisy projections of x on the detector (made of $n_x \times n_y$ pixels), performed from n_θ angles taken in a semi-sphere (n := $n_x \times n_y \times n_\theta$ and n≪N);
- \triangleright A is a matrix of size n×N, representing how the tomograph moves around x with respect to the detector.

The reconstructed image x is the solution of the constrained problem:

- ► $KL(x) = \sum_{j_x=1}^{N_x} \sum_{j_y=1}^{N_y} \sum_{j_z=1}^{N_z} [b \log(\frac{b}{Ax+bg}) + (Ax+bg) b]_{j_x,j_y,j_z}$ is the Kullback-Leibler data-fitting function, in case of Poisson-noise (and bg is the background value);
- $ightharpoonup \lambda > 0$ is the regularization parameter;
- ► $TV(x) := \sum_{j=1}^{N} (\|D_j x\|_2^2 + \beta^2)^{\frac{1}{2}}$ is the differentiable discrete Total Variation of x (with $D_j x \in \mathbb{R}^3$ 3d-discrete gradient of voxel x_j).

Scaled Gradient Projection (SGP) algorithm

SGP algorithm

Initialize: $x_0 \ge 0$, δ , $\sigma \in (0,1)$, $0 \le \alpha_{min} \le \alpha_0 \le \alpha_{max}$, $D_0 \in \mathcal{D}_{\rho}$; for $k = 0, 1, \ldots$

 $d_k = P_+ (x_k - \alpha_k D_k \nabla f(x_k)) - x_k;$ (scaled gradient projection step) $\lambda_k = 1;$

while $f(x_k + \lambda_k d_k) > f(x_k) + \sigma \lambda_k \nabla f(x_k)^T d_k$ $\lambda_k = \delta \lambda_k$;

(backtracking step)

end

 $x_{k+1} = x_k + \lambda_k d_k;$

define the diagonal scaling matrix $D_{k+1} \in \mathcal{D}_{\rho}$; (scaling updating rule) define the step-length $\alpha_{k+1} \in [\alpha_{min}, \alpha_{max}]$; (step-length updating rule)

end

Scaling strategy*

The split gradient idea leads to the following updating rule:

$$D_k = diag\left(\min\left\{\rho, \max\left\{\frac{1}{\rho}, \frac{x_k}{V^{KL}(x_k) + \lambda V^{TV}(x_k)}\right\}\right\}\right), \quad \rho > 1$$

where

$$\nabla f(x) = \nabla KL(x) + \lambda \nabla TV(x)$$

= $[V^{KL}(x) - U^{KL}(x)] + \lambda [V^{TV}(x) - U^{TV}(x)]$

with V^{KL} , $V^{TV} > 0$ and U^{KL} , $U^{TV} \ge 0$

When $D_k = I$, the SGP remains a Gradient Projection method (GP).

Step-length rule based on alternating Barzilai-Borwein steps[†]

Denoting with $s_{k-1} = (x_k - x_{k-1})$ and $z_{k-1} = (\nabla f(x_k) - \nabla f(x_{k-1}))$, compute

$$\alpha_k^{BB1} = \frac{s_{k-1}^T D_k^{-1} D_k^{-1} s_{k-1}}{s_{k-1}^T D_k^{-1} z_{k-1}} \quad \text{and} \quad \alpha_k^{BB2} = \frac{s_{k-1}^T D_k z_{k-1}}{z_{k-1}^T D_k D_k z_{k-1}},$$

and choose

$$\alpha_k = \begin{cases} \min\{\alpha_j^{BB2} \mid j = \max\{1, k - m_{BB}\}, \dots, k\} & \text{if } \frac{\alpha_k^{BB2}}{\alpha_k^{BB1}} < \tau \\ \alpha_k^{BB1}, & \text{otherwise} \end{cases}$$

Step-length rule based on Ritz-like values*

Choose the step-lengths for m_R next iterations as

$$\alpha_{k-1+i} = \frac{1}{\theta_i}, \quad i = 1, \dots, m_R$$

where θ_i , $i=1,\ldots,m_R$ are the eigenvalues of an $m_R \times m_R$ tridiagonal matrix T derived by the last m_R scaled gradient steps:

$$\left[D_{k-m_R}^{\frac{1}{2}}\tilde{\mathbf{g}}^{(k-m_R)},\ldots,D_{k-1}^{\frac{1}{2}}\tilde{\mathbf{g}}^{(k-1)}\right],\quad \tilde{\mathbf{g}}_i^{(k-j)} = \begin{cases} 0 & \text{if } (x_{k-j})_i = 0\\ \nabla f(x_{k-j})_i & \text{if } (x_{k-j})_i > 0 \end{cases}$$

In case of gradient methods for $\min \frac{1}{2}x^TAx - b^Tx$, T is given by m_R steps of the Lanczos process applied to A and starting from $g^{(k-m_R)}/||g^{(k-m_R)}||$; θ_i are the so-called *Ritz values* (estimates of the eigenvalues of A).

Numerical results

Parameters:

- $N_x = N_y = N_z = 61$
- $n_x = n_y = 61, n_\theta = 37$
- \triangleright SNR = 41.8257
- λ = 0.03, β = 0.01
- $m_R = m_{BB} = 3$
- δ = 0.4, σ = 2e-4
- $\sim \alpha_{min} = 1$ e-10, $\alpha_{max} = 1$ e5
- au au = 5e-1

Test phantom:

Methods:

"GP_BB" is the non-scaled algorithm implemented with the Barzilai-Borwein rule, while "GP_R" is the non-scaled algorithm with Ritz rule. "SGP_BB" and "SGP_R" are the corresponding scaled versions.

Analysis:

Reconstructions and profiles of interest:

^{* [}Lantéri-Roche-Aime, Inverse Problems, 2002]

^{† [}Zanella et al., Inverse Problems, 2009]

^{* [}Fletcher, Math. Program., 2012], [Porta-Prato-Zanni, J. Sci. Comp., 2015]