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Introduction to 2d Computed Tomography

This work addresses the problem of 2d imaging reconstruction from few tomographic real data. Placing an object between an X-ray source and a
detector, one of its slices is crossed by an X-ray fan-beam and we want to reconstruct its inner part. In modern Computed Tomography (CT) several
projections are executed but it could be important to reduce the number of scans, avoiding to loose too much in quality. Here we compare how two
different and efficient algorithms behave changing the sparisty of the views and working on a dataset obtained from a real tomographic experiment.

Figure: Scheme of a scan
with an X-ray fan-beam.

In our case, the CT image formation process is modelled as an underdetermined linear system
Ax = b and the reconstructed image x is the solution of the regularized problem:

min
x∈RN

f (x) =
1

2
‖Ax − b‖2

2 + λTV (x)

I x is the slice of interest, discretized in N := Nx × Ny pixels;
I b is the collection of all the noisy projection measurements, recorded by a linear detector

(made of ncells elements) from nθ angles taken on a circular trajectory (n := ncells × nθ);
I A is a matrix of size n×N, representing how the projector works on the detector;

I TV (x) :=
∑N

j=1

(
‖Djx‖2

2 + β2
)1

2 is the differentiable discrete Total Variation of x (with

Djx ∈ R2 2d-discrete gradient of pixel xj) and λ > 0 is the regularization parameter.

Figure: Acquisition of
actual projections for the
lotus root phantom.

Due to the incompleteness of the projection data, n�N and the image reconstruction from real data becomes a challenging inverse problem.

Scaled Gradient Projection (SGP) algorithm [1]

The constrained problem minx≥0 f (x) is solved with:

SGP algorithm

Initialize: x0 ≥ 0, δ, σ ∈ (0, 1), 0 ≤ αmin ≤ α0 ≤ αmax, D0 ∈ Dρ;
while (convergence)
dk = P+ (xk − αkDk∇f (xk))− xk; (scaled gradient projection step)
λk = 1;
while f (xk + λkdk) > f (xk) + σλk∇f (xk)Tdk
λk = δλk; (backtracking step)

end
xk+1 = xk + λkdk;
define the diagonal scaling matrix Dk+1 ∈ Dρ;(scaling updating rule)
define the step–length αk+1 ∈ [αmin, αmax];(step–length updating rule)
k = k+1;

end
[1] R. Zanella et al., Inverse Problems, 2009

Fixed Point (FP) algorithm [2]

Considering Lk = L(xk) where L(x) is an operator such that
L(xk)xk = ∇TV (xk), the optimization problem is solved with:

FP algorithm

Initialize: x0

while (convergence)
gk = ∇f (xk);
Hk = AtA + λL(xk); (Hessian approximation)
sk such that Hksk = −gk;

(resolution of an inner inverse problem, with CG method)
xk+1 = xk + sk;
k=k+1;

end

[2] C. Vogel, Computational methods for Inverse Problems, SIAM 2002.

Numerical results

Problem parameters:
I Nx = Ny = 256 (hence N = 65536)
I angular range = [0, 2π]
I nθ = 120 or nθ = 20
I ncells = 429 (hence n = 51480 or n =

8580)
I data and image accuracies ≈ 280 µm

Algorithm parameters:
I λ = 10−2 for SGP, λ = 102 for FP
I β = 10−3

I maxiter cg = 10

Dataset:[3]

the object of interest is a central slice of a piece
of lotus root filled with

I one circular chalk
I square pieces of

ceramics
I a section of a pencil
I fragments of matches

[3] [http://www.fips.fi/dataset.php], [T. Bubba et al., Tomo-

graphic X-ray data of a lotus root filled with attenuating objects,

arXiv:1609.07299, 2016]
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