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Introduction to 2d Computed Tomography

This work addresses the problem of 2d imaging reconstruction from few tomographic real data. Placing an object between an X-ray source and a

detector, one of its slices is crossed by an X-ray fan-beam and we want to reconstruct its inner part. In modern Computed Tomography (CT) several
projections are executed but it could be important to reduce the number of scans, avoiding to loose too much in quality. Here we compare how two
different and efficient algorithms behave changing the sparisty of the views and working on a dataset obtained from a real tomographic experiment.

In our case, the CT image formation process is modelled as an underdetermined linear system
Ax = b and the reconstructed image x is the solution of the regularized problem:

1
min f(x) = 5| Ax - b|5+ ATV(x)
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PR » x is the slice of interest, discretized in N := N, X N, pixels;

@@ » b is the collection of all the noisy projection measurements, recorded by a linear detector

(made of nes elements) from ny angles taken on a circular trajectory (n := ngeys X ng); S —
igure: Acquisition o

actual projections for the
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Figure: Scheme of a scan » TV (x) = Zszl (|[D;x||53 + 52)? is the differentiable discrete Total Variation of x (with lotus root phantom.
with an X-ray fan-beam.

@@ » A is a matrix of size nx N, representing how the projector works on the detector;

D:x € R? 2d-discrete gradient of pixel x;) and A > 0 is the regularization parameter.
Due to the incompleteness of the projection data, n<<N and the image reconstruction from real data becomes a challenging inverse problem.

Scaled Gradient Projection (SGP) algorithm !!!

Fixed Point (FP) algorithm !

The constrained problem min,>q f(x) is solved with: Considering L, = L(xx) where L(x) is an operator such that
L(xx)xx = V TV(xx), the optimization problem is solved with:

SGP algorithm

Initialize: Xo = 07 57 0 C (07 1)7 0 < Qmin < O < X max DO = Dpi iy algorithm
while (convergence) s
di = P, (Xk — Oszka(Xk)) — Xk; (scaled gradient projection step) Imt_lallze: X0
A = 1: while (convergence)
while  f(xk + Mede) > F(xx) + oMV F(xx) T di gk = Vf (X):;
A = O\ (backtracking step) Hy = A"A + )\L(Xk); (Hessian approximation)
end Sk such that Hysy = —gu;

Xk11 = Xk + )\kdk; (resolution of an inner inverse problem, with CG method)

define the diagonal scaling matrix D1 € D,;(scaling updating rule) Xk+1 = Xk T Sk;

define the step—length a1 € [min, max|;(step-length updating rule) k=k+1;
k = k+1; end
end
11 R. Zanella et al.. Inverse Problems, 2009 12l C. Vogel, Computational methods for Inverse Problems, SIAM 2002.

Numerical results

Problem parameters: Results from 120 projections Results from 20 projections

» N, = N, = 256 (hence N = 65536) | |
» angular range = [0, 27] Sinogram: Sinogram:
> n@:12Oorn9:2O
> Neets = 429 (hence n = 51480 or n =
8580)
» data and image accuracies ~ 280 um | |
Reconstructions: Reconstructions:
SGP FP SGP FP

Algorithm parameters:

» A= 1072 for SGP, \ = 10? for FP
> 6 — 10_3
» maxiter cg = 10 k=20

Dataset:’’!
the object of interest is a central slice of a piece
of lotus root filled with

/ooms of reconstructions at k=1000: /ooms of reconstructions at k=1000:

SGP FP SGP FP

» one circular chalk k—1000

» square pieces of
ceramics

» a section of a pencil
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» fragments of matches

Bl [http://www fips.fi/dataset.php], [T. Bubba et al., Tomo-

graphic X-ray data of a lotus root filled with attenuating objects,
arXiv:1609.07299, 2016]




