A scaled ε-subgradient method

Alessandro Benfenat ${ }^{\ddagger}$, Silvia Bonettini ${ }^{\dagger}$, Valeria Ruggiero ${ }^{\dagger}$

-Subgradient Method: a Scaled Version

The optimization problem reads as

$$
\min _{x} f(x)+\Phi(x)
$$

Scaled ε subgradient method: generalization of the Forward Backward algorithm

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ convex, proper, I.s.c function (possible non-differentiable)
- Φ convex, proper, I.s.c function; $\operatorname{dom}(\Phi) \subset \operatorname{dom}(f)$

$$
\begin{equation*}
x^{k+1}=\operatorname{prox}_{\alpha_{k} \Phi, D_{k}^{-1}}\left(x^{k}-\alpha_{k} D_{k} u^{k}\right) \tag{1}
\end{equation*}
$$

α_{k} chosen as in the classical ε-subgradient method (e.g., constant stepsize, Ermoliev series).

Assumption

$$
\lim _{k \rightarrow \infty} \varepsilon_{k}=0
$$

- $u^{k} \in \partial_{\varepsilon_{k}} f\left(x^{k}\right)$ for some $\varepsilon_{k} \geq 0$
- α_{k} is a positive stepsize
- D_{k} is a symmetric positive definite matrix with bounded eigenvalues
- $\|y\|_{D^{-1}}=y^{\top} D^{-1} y$
- e.g. $\Phi=i_{X}$, with $X \subset \operatorname{dom}(f)$, $X \neq \emptyset$, closed, convex set

Convergence Results

Assume that both the ε-subgradients of f and Φ and the eigenvalues of D_{k} are bounded. Let set $f^{*}=\inf _{x \in \mathbb{R}^{n}}(f(x)+\Phi(x))$ and define X^{*} as the set of solutions; under the assumptions on (1)

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \epsilon_{k}=0, \quad \sum_{k=0}^{\infty} \alpha_{k}=\infty, \sum_{k=0}^{\infty} \alpha_{k}^{2}<\infty, \quad \sum_{k=0}^{\infty} \epsilon_{k} \alpha_{k}<\infty \tag{2}
\end{equation*}
$$

one has
a) $\liminf _{k \rightarrow \infty}\left(f\left(x^{k}\right)+\Phi\left(x^{k}\right)\right)=f^{*}$;
b) If $\left\{x^{k}\right\}$ is bounded, there exists a limit point of it belonging to X^{*};
c) If $X^{*} \neq \emptyset \lim _{k \rightarrow \infty} x^{k}=x^{*} \in X^{*}$ and

$$
\lim _{k \rightarrow \infty}\left(f\left(x^{k}\right)+\Phi\left(x^{k}\right)\right)=f^{*}=f\left(x^{*}\right)
$$

d) If $X^{*}=\emptyset,\left\{x^{k}\right\}$ is unbounded.

The convergence rate is quite pessimistic $\left(\sim\left(\sum \alpha_{k}\right)^{-1}\right)$, but the numerical experience shows that the actual performance of the scaled method overcomes the non scaled version.

A choice for α_{k}

Dynamic rule

$$
\alpha_{k}=\frac{f\left(x^{k}\right)-f_{k}}{\left\|u^{k}\right\|^{2}} \text { or } \alpha_{k}=\frac{f\left(x^{k}\right)-f_{k}}{\max \left\{1,\left\|u^{k}\right\|^{2}\right\}}
$$

Assumption: ε-subgradients of f and Φ bounded.
Inspired by the Polyak rule, f_{k} is an estimation of f^{*} : a level algorithm (Goffin 99) is employed to obtain such an estimation.

All the technical details and complete references are available in
S. Bonettini, A. Benfenati, and V. Ruggiero, Scaling Techniques for ε-Subgradient Methods, SIAM Journal on Optimization 2016 26:3, 1741-1772

Application: Image Restoration with Poisson Noise

Let consider a blurred image affected by Poisson noise: the aim is to restore the image by solving

$$
\min _{x} f(x)+\Phi(x) \equiv f_{0}(x)+f_{1}(A x)+\Phi(x)
$$

$f_{0}(x)$ is the generalized Kullback-Leibler di- $\quad g$ is the blurred and noisy vergence:
image;

- b is a constant background term;
- H is the linear blurring operator.
$\Phi(x)=i_{\left\{x \in \mathbb{R}^{n} \mid x_{i} \geq 0\right\}}, \quad f_{1}(A x)=\beta \sum_{i=1}^{n}\left\|A_{i} x\right\|, \quad A_{i} \in \mathbb{R}^{2 \times n}$ (Total Variation)
x^{*}

Micro Test problem:
$128 \times 128, \max \left(x^{*}\right)=690$
$\frac{\left\|g-x^{*}\right\|}{\left\|x^{*}\right\|}=0.1442$
$\beta=0.0477$ $\beta=0.0477$

The Scaled Primal Dual Hybrid Algorithm (SPDHG) reads as

$$
\begin{aligned}
y^{k+1} & =\operatorname{prox}_{\tau_{k} f_{1}^{*}, l d}\left(y^{k}+\tau_{k} A x^{k}\right) \\
u^{k} & =d^{k}+A^{\top} y^{k+1} \\
x^{k+1} & =\operatorname{prox}_{\alpha_{k} \Phi, D_{k}^{1}}\left(x^{k}-\alpha_{k} D_{k} u^{k}\right)
\end{aligned}
$$

$u^{k}=U_{k}-V_{k}, \quad U_{k} \geq 0, V_{k}>0$
$D_{k}=\min \left\{L_{k}^{-1}, \max \left\{x^{k} / V_{k}, L_{k}\right\}\right\}$ $L_{k}=\sqrt{1+\gamma_{k}}$.

Assume that $d^{k}=\nabla f\left(x^{k}\right), A^{\top} y^{k+1} \in \partial_{\varepsilon_{k}} \Phi\left(x^{k}\right)$ and the eigenvalues of D_{k} are bounded.

$$
\alpha_{k}=\mathcal{O}\left(k^{-p}\right), \tau_{k}=\mathcal{O}\left(k^{p}\right), \gamma_{k}=\mathcal{O}\left(k^{-q}\right), \frac{1}{2}<p \leq 1, \quad q>1
$$

If $\operatorname{diam}\left(\operatorname{dom}\left(f_{1}^{*}\right)\right)<\infty$ then

$$
\liminf _{k \rightarrow \infty} f\left(x^{k}\right)+\Phi\left(x^{k}\right)=f^{*}
$$

If the set of the solutions $X^{*} \neq \emptyset, \lim _{k \rightarrow \infty} x^{k}=x^{*} \in X^{*}$ and

$$
\lim _{k \rightarrow \infty} f\left(x^{k}\right)+\Phi\left(x^{k}\right)=f^{*}=f\left(x^{*}\right)
$$

cameraman

[^0]
[^0]: x-axis: time for 3000 iterations.

