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c—Subgradient Method: a Scaled Version

The optimization problem reads as Scaled ¢ subgradient method: generalization of the Forward } ;
min f(x) + ®(x) Backward algorithm o u* € 0., f(x¥) for some £ > 0
X ® (v, IS a positive stepsize
xk Tl = ProX,, o p-! (x* — a, Dyu®) (1) k P P

e D, is a symmetric positive
definite matrix with bounded
eigenvalues

o |yllpr=y'Dly

e e.g. =y, with X C dom(f),
k'LmOO k=0 X # (), closed, convex set

» f:R” = RU{+00} convex, proper, I.s.c «, chosen as in the classical e—subgradient method (e.g.,
function (possible non—differentiable) constant stepsize, Ermoliev series).

» ® convex, proper, |.s.c function;
dom(®) C dom(f) Assumption:

Convergence Results Application: Image Restoration with Poisson Noise

Assume that both the e—subgradients of f and ® and the eigenvalues | Let consider a blurred image affected by Poisson noise: the aim is to
of Dy are bounded. Let set f* = inf (f(x) + ®(x)) and define X* as | restore the image by solving

EIN
the set of solutions; under the assumptions on (1) min f(x) + ®(x) = f(x) + fi(Ax) + O(x)
_ = = = : : : . » g is the blurred and noisy
im ¢, = 0. a, =00, Y al< oo, exay, < 0o (2) fo(x) is the generalized Kullback-Leibler di- = & =™
Kroc Z Z Z vergence: Ibm.age'
1 ) » b is a constant background
one has g; . term:
a) |i/[n inf(f(xk) + c|>(Xk)) = f; fo(x) = Zgi log (Hx); + b - (Hx)i+ b —g » H is the linear blurring
— 00 =1 t
b) If {x*} is bounded there exists a limit point of it belonging to X*; Oper; o
<) If X*#0 lim x*=x* € X* and O(x) = ifxerrx>01, f(A @Z |Aix||, A;i € R™"" (Total Variation)

k— 00

lim (f(x*) + &(x¥)) = f* = f(x*)

k— 00

d) If X* =0, {x*} is unbounded.

The convergence rate is quite pessimistic (N (> ak)_l),aut the

Micro Test problem:

128 x 128, max(x™) = 690
16 = _ 144

The Scaled Primal Dual Hybrid Algorithm (SPDHG) reads as

numerical experience shows that the actual performance of the scaled
method overcomes the non scaled version.

: k+1
A choice for o, y = prox g (" + TAX) u = U= Vi, U >0, Vj >0
u — d* + AUf“/ K Dy = min { L}, max {x*/Vj, L, }}
Dynamic rule xH = = ProX,,¢ p 1(x" — o@D L = /14 7.
k K\ AT, k+1 k -
fF(x) — f f(x*) — £ Assume that d* = V£ (x*), A' y*" € 9., P(x*) and the eigenvalues of
oy = AT or (v = TG Dk are bounded.
|u¥| max{1, |lu*|[*} ) 1
=0 (k?), e=0(K), u=0(k7), 5<p<1, q>1
Assumption: e-subgradients of f and ¢ bounded. If diam(dom(£")) < oo then
I k kn _ rx
Inspired by the Polyak rule, f; is an estimation of f*: a level algorithm "PLLTC FXT) +0(x7) = £7.
(GOffln 99) IS employed to obtain such an estimation. If the set of the solutions X* # @ lim Xk - X - )(>l< and
’ k— 00
S e im F(x¥) + &(xK) = £ = £(x*).
—&— Minimum recorder value £ k— 00
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All the technical details and complete references are available in

S. Bonettini, A. Benfenati, and V. Ruggiero, Scaling Techniques for c-Subgradient
Methods, SIAM Journal on Optimization 2016 26:3, 1741-1772

x—axis: time for 3000 iterations.
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