

A scaled ε -subgradient method

<u>Alessandro Benfenati[‡], Silvia Bonettini[†], Valeria Ruggiero[†]</u>

[†]Department of Mathematics and Computer Science, University of Ferrara, [‡]Université Paris–Est LIGM

$\varepsilon\textsc{-Subgradient}$ Method: a Scaled Version

The optimization problem reads as $\min_{x} f(x) + \Phi(x)$

Scaled ε subgradient method: generalization of the Forward Backward algorithm

$$\mathbf{x}^{k+1} = \operatorname{prox}_{\alpha_k \Phi, D_k^{-1}} \left(\mathbf{x}^k - \alpha_k D_k \mathbf{u}^k \right)$$

- $u^k \in \partial_{\varepsilon_k} f(x^k)$ for some $\varepsilon_k \ge 0$
- α_k is a positive stepsize
- D_k is a symmetric positive definite matrix with bounded eigenvalues
- $||y||_{D^{-1}} = y^{\top} D^{-1} y$
- e.g. $\Phi = i_X$, with $X \subset \text{dom}(f)$, $X \neq \emptyset$, closed, convex set
- ► $f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ convex, proper, I.s.c α_k chosen as in the classical ε -subgradient method (e.g., function (possible non-differentiable) constant stepsize, Ermoliev series).
- Φ convex, proper, l.s.c function; dom(Φ) ⊂ dom(f)

Assumption:

$$\lim_{k\to\infty}\varepsilon_k=0$$

Convergence Results

Assume that both the ε -subgradients of f and Φ and the eigenvalues of D_k are bounded. Let set $f^* = \inf_{x \in \mathbb{R}^n} (f(x) + \Phi(x))$ and define X^* as the set of solutions; under the assumptions on (1)

$$\lim_{k \to \infty} \epsilon_k = 0, \quad \sum_{k=0}^{\infty} \alpha_k = \infty, \sum_{k=0}^{\infty} \alpha_k^2 < \infty, \quad \sum_{k=0}^{\infty} \epsilon_k \alpha_k < \infty$$
(2)

one has

a) lim inf(f(x^k) + Φ(x^k)) = f*;
b) If {x^k} is bounded, there exists a limit point of it belonging to X*;
c) If X* ≠ Ø lim x^k = x* ∈ X* and lim (f(x^k) + Φ(x^k)) = f* = f(x*)
d) If X* = Ø, {x^k} is unbounded.

The convergence rate is quite pessimistic $\left(\sim (\sum \alpha_k)^{-1}\right)$, but the numerical experience shows that the actual performance of the scaled method overcomes the non scaled version.

Application: Image Restoration with Poisson Noise

(1)

Let consider a blurred image affected by Poisson noise: the aim is to restore the image by solving $\min f(x) + \Phi(x) \equiv f_0(x) + f_1(Ax) + \Phi(x)$ ► g is the blurred and noisy 2) $f_0(x)$ is the generalized Kullback–Leibler diimage; vergence: b is a constant background term; $f_0(x) = \sum_{i=1}^{i} g_i \log \frac{g_i}{(Hx)_i + b} + (Hx)_i + b - g_i \quad \text{term;} \quad H \text{ is the linear blurring}$ operator. $\Phi(x) = i_{\{x \in \mathbb{R}^n | x_i \ge 0\}}, \quad f_1(Ax) = \beta \sum ||A_i x||, \ A_i \in \mathbb{R}^{2 \times n} \text{ (Total Variation)}$ Micro Test problem: $128 \times 128, \max(x^*) = 690$ $\frac{\|g - x^*\|}{\|x^*\|} = 0.1442$ $\beta = 0.0477$

Dynamic rule
$$\alpha_k = \frac{f(x^k) - f_k}{\|u^k\|^2} \text{ or } \alpha_k = \frac{f(x^k) - f_k}{\max\{1, \|u^k\|^2\}}$$

Assumption: ε -subgradients of f and Φ bounded.

Inspired by the Polyak rule, f_k is an estimation of f^* : a *level algorithm* (Goffin 99) is employed to obtain such an estimation.

The Scaled Primal Dual Hybrid Algorithm (SPDHG) reads as

$$y^{k+1} = \operatorname{prox}_{\tau_k f_1^*, Id}(y^k + \tau_k A x^k)$$
$$u^k = d^k + A^\top y^{k+1}$$
$$x^{k+1} = \operatorname{prox}_{\alpha_k \Phi, D_k^{-1}}(x^k - \alpha_k D_k u^k)$$

$$u^k = U_k - V_k, \quad U_k \ge 0, V_k > 0 \ D_k = \min \{L_k^{-1}, \max \{x^k/V_k, L_k\}\} \ L_k = \sqrt{1 + \gamma_k}.$$

Assume that $d^k = \nabla f(x^k)$, $A^\top y^{k+1} \in \partial_{\varepsilon_k} \Phi(x^k)$ and the eigenvalues of D_k are bounded.

$$\alpha_{k} = \mathcal{O}\left(k^{-p}\right), \ \tau_{k} = \mathcal{O}(k^{p}), \ \gamma_{k} = \mathcal{O}\left(k^{-q}\right), \ \frac{1}{2} 1$$

If diam $(dom(f_1^*)) < \infty$ then $\liminf_{k \to \infty} f(x^k) + \Phi(x^k) = f^*.$ If the set of the solutions $X^* \neq \emptyset$, $\lim_{k \to \infty} x^k = x^* \in X^*$ and $\lim_{k \to \infty} f(x^k) + \Phi(x^k) = f^* = f(x^*).$

All the technical details and complete references are available in S. Bonettini, A. Benfenati, and V. Ruggiero, *Scaling Techniques for* ε -*Subgradient Methods*, SIAM Journal on Optimization 2016 26:3, 1741-1772

Optimiziation Techniques For Inverse Problems III - 20 September 2016