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ε–Subgradient Method: a Scaled Version

The optimization problem reads as

min
x

f (x) + Φ(x)

I f : Rn → R ∪ {+∞} convex, proper, l.s.c
function (possible non–differentiable)

I Φ convex, proper, l.s.c function;
dom(Φ) ⊂ dom(f )

Scaled ε subgradient method: generalization of the Forward
Backward algorithm

xk+1 = proxαkΦ,D−1
k

(
xk − αkDku

k
)

(1)

αk chosen as in the classical ε–subgradient method (e.g.,
constant stepsize, Ermoliev series).

Assumption:
lim
k→∞

εk = 0

• uk ∈ ∂εkf (xk) for some εk ≥ 0

• αk is a positive stepsize

• Dk is a symmetric positive
definite matrix with bounded
eigenvalues

• ‖y‖D−1 = y>D−1y

• e.g. Φ = iX , with X ⊂ dom(f ),
X 6= ∅, closed, convex set

Convergence Results

Assume that both the ε–subgradients of f and Φ and the eigenvalues
of Dk are bounded. Let set f ∗ = inf

x∈Rn
(f (x) + Φ(x)) and define X ∗ as

the set of solutions; under the assumptions on (1)

lim
k→∞

εk = 0,
∞∑
k=0

αk =∞,
∞∑
k=0

α2
k <∞,

∞∑
k=0

εkαk <∞ (2)

one has

a) lim inf
k→∞

(f (xk) + Φ(xk)) = f ∗;

b) If {xk} is bounded, there exists a limit point of it belonging to X ∗;

c) If X ∗ 6= ∅ lim
k→∞

xk = x∗ ∈ X ∗ and

lim
k→∞

(f (xk) + Φ(xk)) = f ∗ = f (x∗)

d) If X ∗ = ∅, {xk} is unbounded.

The convergence rate is quite pessimistic
(
∼ (
∑
αk)−1

)
,but the

numerical experience shows that the actual performance of the scaled
method overcomes the non scaled version.

A choice for αk

Dynamic rule

αk =
f (xk)− fk
‖uk‖2

or αk =
f (xk)− fk

max{1, ‖uk‖2}

Assumption: ε-subgradients of f and Φ bounded.

Inspired by the Polyak rule, fk is an estimation of f ∗: a level algorithm
(Goffin 99) is employed to obtain such an estimation.
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All the technical details and complete references are available in
S. Bonettini, A. Benfenati, and V. Ruggiero, Scaling Techniques for ε-Subgradient
Methods, SIAM Journal on Optimization 2016 26:3, 1741-1772

Application: Image Restoration with Poisson Noise

Let consider a blurred image affected by Poisson noise: the aim is to
restore the image by solving

min
x

f (x) + Φ(x) ≡ f0(x) + f1(Ax) + Φ(x)

f0(x) is the generalized Kullback–Leibler di-
vergence:

f0(x) =
n∑

i=1

gi log
gi

(Hx)i + b
+ (Hx)i + b − gi

I g is the blurred and noisy
image;

I b is a constant background
term;

I H is the linear blurring
operator.

Φ(x) = i{x∈Rn|xi≥0}, f1(Ax) = β

n∑
i=1

‖Aix‖, Ai ∈ R2×n (Total Variation)

x∗ g

Micro Test problem:

128× 128,max(x∗) = 690
‖g − x∗‖
‖x∗‖

= 0.1442

β = 0.0477

The Scaled Primal Dual Hybrid Algorithm (SPDHG) reads as

y k+1 = proxτkf ∗1 ,Id(y k + τkAx
k)

uk = d k + A>y k+1

xk+1 = proxαkΦ,D−1
k

(xk − αkDku
k)

uk = Uk − Vk, Uk ≥ 0,Vk > 0

Dk = min
{
L−1
k ,max

{
xk/Vk, Lk

}}
Lk =

√
1 + γk.

Assume that d k = ∇f (xk), A>y k+1 ∈ ∂εkΦ(xk) and the eigenvalues of
Dk are bounded.

αk = O
(
k−p
)
, τk = O(kp), γk = O

(
k−q
)
,

1

2
< p ≤ 1, q > 1

If diam(dom(f ∗1 )) <∞ then

lim inf
k→∞

f (xk) + Φ(xk) = f ∗.

If the set of the solutions X ∗ 6= ∅, lim
k→∞

xk = x∗ ∈ X ∗ and

lim
k→∞

f (xk) + Φ(xk) = f ∗ = f (x∗).
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x–axis: time for 3000 iterations.
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