
A meta-learning approach to tune
hyperparameters in Neural Networks

Micaela Verucchi(*), Giorgia Franchini(*), Matteo Spallanzani(*),
Marko Bertogna(*) and Luca Zanni(*)

(*) Department of Physics, Informatics and Mathematics, Modena (Italy)

PROBLEM STATEMENT

. Hyperparameters are a fundamental component of most machine
learning algorithms; these parameters strongly influence both the
space of approximating functions and the way this space is ex-
plored during the training phase.

. Hyperparameters tuning is particularly critical for Deep Learning,
as it affects both the convergence time of the training procedure
and the network’s accuracy.

. Hyperparameters have usually been tuned through careful hand-
made procedures. Nowadays, optimized search algorithms which
goal is learning to learn are emerging: this research field deals with
the so-called meta-learning approach.

ä Naive strategy: grid search (“brute force”).

ä Our strategy: probabilistic change of the learning rate, driven by past measure-
ments of the test error.

1. Start with a heuristic guess of the learning rate, then train the network.

2. Randomly select an increase/decrease of the learning rate, then train the net-
work again.

3. If the new test error improves, then increase the probability to repeat the
choice; if the new test error worsens, then decrease the probability to repeat
the choice.

4. Return to step 2.

CNN EXPERIMENTAL TEST ARCHITECTURE

2D Convolution 2D Convolution Dense

2D Max-Pooling 2D Max-Pooling DenseInput

Network architecture:

• Input: 28x28x1 (MNIST image [5])

• 2D Convolution: 5x5x32, stride 1x1, “same” padding, ReLU

• 2D Max-Pooling: 2x2, stride 2x2

• 2D Convolution: 5x5x64, stride 1x1, “same” padding, ReLU

• 2D Max-Pooling: 2x2, stride 2x2

• Fully connected: 1024 units, ReLU

• Dropout: pkeep = 0.5

• Output: 10 units (class probabilities)

Training parameters:

• Mini-batch size: 50

• Loss function: cross entropy

• Optimizer: Adam

• Early stopping

ALGORITHM

Algorithm 1 AdjustLR
Input: λin, p1, p2, p3

Output: λout, c
Sample u ∼ U [0, 1]
if u < p1 then
λout = λin + ε
c = 1

else if u < p1 + p2 then
λout = λin
c = 2

else
λout = λin − ε
c = 3

end if

Algorithm 2 TuneLearningRate

1: Set i = 1, noprog = 0, imax, noprogmax ∈ N
2: Set λ0, ε, pε ∈ R+

3: accold = Train_NN(λ0)
4: Set p1 = p2 = p3 = 1/3
5: λ1, c = AdjustLR(λ0, p1, p2, p3)
6: while i < imax and noprog < noprogmax do
7: accnew = Train_NN(λi)
8: if accnew ≥ accold then
9: pc = pc + pε

10: pc̄ = pc̄ − pε/2
11: λbest = λi
12: noprog = 0
13: else
14: pc = pc − pε
15: pc̄ = pc̄ + pε/2
16: noprog = noprog + 1
17: end if
18: λi+1, c = AdjustLR(λi, p1, p2, p3)
19: accold = accnew
20: i = i+ 1
21: end while

EXPERIMENTAL RESULTS

0

0,0002

0,0004

0,0006

0,0008

0,001

0,0012

0,0014

0,988

0,989

0,99

0,991

0,992

0,993

0,994

0,995

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Le
ar

n
in

g 
R

at
e

A
cc

u
ra

cy

Iteration

A run of the algorithm

Accuracy Learning Rate

0,9895

0,99

0,9905

0,991

0,9915

0,992

0,9925

0,993

0,9935

0,994

0 0,0002 0,0004 0,0006 0,0008 0,001 0,0012 0,0014

A
cc

u
ra

cy

Learning Rate

Accuracy vs Learning Rate

Accuracy Mean Accuracy

PERSPECTIVE WORK

. Apply this methodology to other hyperparameters: mini-batch size, optimizer, regularization technique. This
exploration will benefit of 25000 hours of HPC resources that we have been granted by the CINECA consortium
[6].

. Apply our algorithm to train a CNN that should solve behavioural cloning (steering angle prediction) and be
deployed on an autonomous F1/10th toy car [7].

. Apply our algorithm to train a CNN that should solve image segmentation on both a classification task (semantic
segmentation) and a regression task (depth estimation), and should be deployed on crossroads cameras in the
Modena Automotive Smart Area (MASA) [8].

REFERENCES

[1] Meta-learning approach to neural network optimization, P. Kordìk, J. Koutnìk, J. Drchal, O. Kovarik, M. Cepek, M. Snorek, Neural Networks 23, pp.
568–582 (2010)

[2] Learning to learn by gradient descent by gradient descent, M. Andrychowicz1, M. Denil, S. G. Colmenarejo, M. W. Hoffman, D. Pfau, T. Schaul, B.
Shillingford, N. de Freitas, arXiv:1606.04474v2 (2016)

[3] Adam: A method for stochastic optimization, D. Kingma, J. Ba, arXiv:1412.6980 (2014)
[4] Optimization methods for large-scale machine learning, L Bottou, FE Curtis, J Nocedal, arXiv:1606.04838 (2016)
[5] yann.lecun.com/exdb/mnist/
[6] www.cineca.it/en
[7] f1tenth.org
[8] https://class-project.eu/


