

On the steplength selection in Stochastic Gradient Methods

Giorgia Franchini, and Luca Zanni

Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Modena (Italy)

STOCHASTIC GRADIENT METHODS

The following optimization problem, which minimizes the sum of cost functions over samples from a finite training set, appears frequently in machine learning

$$\min F(x) \equiv \frac{1}{n} \sum_{i=1}^{n} f_i(x), \qquad (1)$$

where *n* is the number of samples, and each $f_i : \mathbb{R}^d \to \mathbb{R}$ is the cost function corresponding to a training set element.

- ▷ When *n* is large, computing F(x) and $\nabla F(x)$ is prohibited;
- Stochastic Gradient (SG) method and its variants have been the main approaches for solving (1);
- ▷ in the t th iteration of SG, a random index of a training sample i_t is chosen from $\{1, 2, ..., n\}$ and the iterate x_t is updated by

 $x_{t+1} = x_t - \eta_t \nabla f_{i_t}(x_t)$

where $\nabla f_{i_t}(x_t)$ denotes the gradient of the $i_t - th$ component function at x_t , and $\eta_t > 0$ is the steplength or learning rate, [1].

ADAPTIVE STEPLENGTH SELECTION IN THE STOCHASTIC FRAMEWORK

• The deterministic framework: Selections based on the Ritz-like values [2]

Choose the steplengths for m_R next iterations as

$$\eta_{t-1+i}^R = \frac{1}{\theta_i}, \qquad i = 1, \dots, m_R \qquad (m_R = 3, 4, 5)$$

where θ_i are the eigenvalues of an $m_R \times m_R$ symmetric tridiagonal matrix *T* derived from the last m_R gradients

 $[\nabla F(x_{t-m_R}),\ldots,\nabla F(x_{t-1})]$

by generalizing the Lanczos process for approximating the eigenvalues of a symmetric matrix.

In case of quadratic objective function $(F(x) = \frac{1}{2}x^TAx - b^tx)$, the values θ_i (called *Ritz* values) are approximations of m_R eigenvalues of the symmetric positive definite matrix A.

In the general non-quadratic case, the values θ_i tend to approximate m_R eigenvalues of the Hessian matrix at the solution [4].

Compute the symmetric tridiagonal matrix T

▷ Let $G = [\nabla F(x_{t-m_R}), \dots, \nabla F(x_{t-1})]$ $(m_R = 3, 4, 5)$

▷ Compute the Cholesky decomposition $G^T G = R^T R$ where $R_{m_R \times m_R}$ is upper triangular

▷ Compute

 \triangleright Compute \tilde{T}

$$\tilde{T} = \begin{bmatrix} \mathbf{R} & \mathbf{v} \end{bmatrix} J \mathbf{R}^{-1}$$
 where $\mathbf{R}^T \mathbf{v} = G^T \nabla F(x_t)$

- $\triangleright T = tril(T) + tril(T,-1)'$
- The stochastic framework: Selection based on Ritz-like values in SG
 Exploit

 $\tilde{G} = \nabla f_{t-m_R}(x_{t-m_R}), \dots, \nabla f_{t-1}(x_{t-1})]$

in computing the *Ritz-like* values θ_i for the next m_R iterations and set in SGD

$$\eta_t = \max\left\{\min\left\{10^2\eta_0, \frac{1}{\theta_i}\right\}, 10^{-1}\eta_0\right\}$$

THE TEST PROBLEM

EXPERIMENTAL RESULTS

• Logistic regression with $l_2 - norm$ regularization:

 $\min_{x} F(x) = \frac{1}{n} \sum_{i=1}^{n} \log \left[1 + exp(-b_i a_i^T x) \right] + \frac{\lambda}{2} \|x\|_2^2$

where $a_i \in \mathbb{R}^d$ and $b_i \in \{\pm 1\}$ are the feature vectors and class labels of the i - th sample, respectively, and $\lambda > 0$ is a regularization parameter;

• database: MNIST 8 and 9 digits (binary classification), dimension: 11800×784 .

CONCLUSION AND PERSPECTIVE WORK

Adaptive steplengths make the algorithms more robust then the standard SG methods and provide performances comparable with SG with best-tuned steplengths [6], [5];

ADAM ALGORITHM [3]

Algorithm 1 Adam

1: Choose maxit, η , ϵ , β_1 and $\beta_2 \in [0, 1)$, x_0 ; 2: initialize $m_0 \leftarrow 0$, $v_0 \leftarrow 0$, $t \leftarrow 0$ 3: **for** $t \in \{0, \dots, maxit\}$ **do** 4: $t \leftarrow t + 1$

- 5: $g_t \leftarrow \nabla f_{i_t}(x_{t-1})$
- 6: $m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 \beta_1) \cdot g_t$
- 7: $v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 \beta_2) \cdot g_t^2$
- 8: $\eta_t = \eta \frac{\sqrt{1-\beta_2^t}}{(1-\beta_1^t)}$
- 9: $x_t \leftarrow x_{t-1} \eta_t \cdot m_t / (\sqrt{v_t} + \epsilon)$ 10: end for
- 11: Result: x_t

▷ further study to improve the adaptive steplength rules also in the stochastic case;

▷ validation of the stochastic-Ritz version: experiments on other database and other loss-functions;

exploit mini-batch of adaptive size; analyse the sensitivity of the step size rules to the mini-batch size, possible combination with inexact Line-Search.

References

- [1] L. Bottou, F.E. Curtis, J. Nocedal, *Optimization methods for large-scale machine learning*, SIAM Review, 2018 SIAM
- [2] R. Fletcher, *A limited memory steepest descent method*, Mathematical Programming, Volume 135, Springer (2012)
- [3] D. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv:1412.6980 (2014)
- [4] D.Serafino, V.Ruggiero, G.Toraldo, L.Zanni, On the steplength selection in gradient methods for unconstrained optimization, Appl. Math. Comput. 318(2018) 176–195.
- [5] Sopyla, Drozda, SGD with BB update step for SVM, Inf. Sci., 2015
- [6] Tan, Ma, Dai, Qian, BB Step Size for SGD, Adv NIPS 2016