On the steplength selection
in Stochastic Gradient Methods

Giorgia Franchini, and Luca Zanni

Department of Physics, Informatics and Mathematics,

UNIMORE

UNIVERSITA DEGLI STUDI DI
MODENA E REGGIO EMILIA

STOCHASTIC GRADIENT METHODS

K ©

High-Performance Real-Time Lab

University of Modena and Reggio Emilia, Modena (Italy)

> The following optimization problem, which minimizes the sum of
cost functions over samples from a finite training set, appears fre-
quently in machine learning

> When n is large, computing F'(x) and V F'(x) is prohibited;

> Stochastic Gradient (SG) method and its variants have been the main approaches
for solving (1);

> in the ¢ — th iteration of SG, a random index of a training sample ¢, is chosen from

(1) {1,2,...,n} and the iterate x, is updated by

Tir1 = Ty — MV [, (5'316)

where n is the number of samples, and each f; : R?% — R is the cost
function corresponding to a training set element.

where V f;, () denotes the gradient of the i; — th component function at x;, and
n: > 0 is the steplength or learning rate, [1].

ADAPTIVE STEPLENGTH SELECTION IN THE STOCHASTIC FRAMEWORK
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by generalizing the Lanczos process for approximating the eigen- T'=|Rv|JR where Rv =G VE(z)
values of a symmetric matrix. - > T = tril(T) + tril(T, 1Y

In case of quadratic objective function (F(z) = 1z Az — b'z), the
values 0; (called Ritz values) are approximations of m g eigenvalues
of the symmetric positive definite matrix A.

In the general non-quadratic case, the values 0; tend to approxi-
mate mp eigenvalues of the Hessian matrix at the solution [4].

e The stochastic framework: Selection based on Ritz-like values in SG

Exploit
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G=Vfi—mp(Tt—mzn)y- -, Vi_1(xi_1)]

in computing the Ritz-like values 0; for the next mp iterations and set in SGD
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Compute the symmetric tridiagonal matrix T

> Let G=|VF(Xt—mp),..., VF(xi_1)] (mpr = 3,4,5) 1My = max {min {1027707

THE TEST PROBLEM EXPERIMENTAL RESULTS

e Logistic regression with /5 — norm regularization:

Optimality gap with Mg = 1e-5 Optimality gap with My = 1e-4 Optimality gap with My = best
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where a; € RY and b; € {&1} are the feature vec-
tors and class labels of the i — th sample, respec-
tively, and A > 0 is a regularization parameter;
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e database: MNIST 8 and 9 digits (binary classifica-
tion), dimension: 11800 x 784.

Optimality gap with 1y =1€-5 Optimality gap with 1, = 1e-4 Optimality gap with 1, = best
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CONCLUSION AND PERSPECTIVE WORK

Adaptive steplengths make the algorithms more robust then the standard SG methods and provide performances
comparable with SG with best-tuned steplengths [6], [5];

ADAM ALGORITHM [3]

further study to improve the adaptive steplength rules also in the stochastic case;

Algorithm 1 Adam

1: Choose mawit, n, ¢, 51 and (2 € [0,1), o;
2: initialize mg < 0, vg < 0,1t + 0O
3. fort € {0,...,maxit} do

t<—t+1

gt < vf’Lt (xt—l)

me < B1-me—1+ (1 —B1) - g

v <= PBo v+ (1= Ba) - g7

validation of the stochastic-Ritz version: experiments on other database and other loss-functions;

exploit mini-batch of adaptive size; analyse the sensitivity of the step size rules to the mini-batch size, possible
combination with inexact Line-Search.
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10: end for
11: Result: z;




