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STOCHASTIC GRADIENT METHODS

. The following optimization problem, which minimizes the sum of
cost functions over samples from a finite training set, appears fre-
quently in machine learning

minF (x) ≡ 1

n

n∑
i=1

fi(x), (1)

where n is the number of samples, and each fi : Rd → R is the cost
function corresponding to a training set element.

. When n is large, computing F (x) and∇F (x) is prohibited;

. Stochastic Gradient (SG) method and its variants have been the main approaches
for solving (1);

. in the t − th iteration of SG, a random index of a training sample it is chosen from
{1, 2, . . . , n} and the iterate xt is updated by

xt+1 = xt − ηt∇fit(xt)

where ∇fit(xt) denotes the gradient of the it − th component function at xt, and
ηt > 0 is the steplength or learning rate, [1].

ADAPTIVE STEPLENGTH SELECTION IN THE STOCHASTIC FRAMEWORK

• The deterministic framework: Selections based on the Ritz-like
values [2]
Choose the steplengths for mR next iterations as

ηRt−1+i =
1

θi
, i = 1, . . . ,mR (mR = 3, 4, 5)

where θi are the eigenvalues of an mR×mR symmetric tridiagonal
matrix T derived from the last mR gradients

[∇F (xt−mR
), . . . ,∇F (xt−1)]

by generalizing the Lanczos process for approximating the eigen-
values of a symmetric matrix.
In case of quadratic objective function (F (x) = 1

2x
TAx − btx), the

values θi (called Ritz values) are approximations ofmR eigenvalues
of the symmetric positive definite matrix A.
In the general non-quadratic case, the values θi tend to approxi-
mate mR eigenvalues of the Hessian matrix at the solution [4].

Compute the symmetric tridiagonal matrix T

. Let G = [∇F (xt−mR
), . . . ,∇F (xt−1)] (mR = 3, 4, 5)

. Compute the Cholesky decomposition GT G = RT R
where RmR×mR

is upper triangular

. Compute

J =


η−1
t−mR

−η−1
t−mR

. . .

. . . η−1
t−1

−η−1
t−1


. Compute T̃

T̃ = [R v] J R−1 where RTv = GT∇F (xt)

. T = tril(T) + tril(T,-1)’

• The stochastic framework: Selection based on Ritz-like values in SG

Exploit
G̃ = ∇ft−mR

(xt−mR
), . . . ,∇ft−1(xt−1)]

in computing the Ritz-like values θi for the next mR iterations and set in SGD

ηt = max

{
min

{
102η0,

1

θi

}
, 10−1η0

}

THE TEST PROBLEM
• Logistic regression with l2 − norm regularization:

min
x
F (x) =

1

n

n∑
i=1

log
[
1 + exp(−biaTi x)

]
+
λ

2
‖x‖22

where ai ∈ Rd and bi ∈ {±1} are the feature vec-
tors and class labels of the i − th sample, respec-
tively, and λ > 0 is a regularization parameter;

• database: MNIST 8 and 9 digits (binary classifica-
tion), dimension: 11800× 784.

ADAM ALGORITHM [3]

Algorithm 1 Adam

1: Choose maxit, η, ε, β1 and β2 ∈ [0, 1), x0;
2: initialize m0 ← 0, v0 ← 0, t← 0
3: for t ∈ {0, . . . ,maxit} do
4: t← t+ 1
5: gt ← ∇fit(xt−1)
6: mt ← β1 ·mt−1 + (1− β1) · gt
7: vt ← β2 · vt−1 + (1− β2) · g2t
8: ηt = η

√
1−βt

2

(1−βt
1)

9: xt ← xt−1 − ηt ·mt/(
√
vt + ε)

10: end for
11: Result: xt

EXPERIMENTAL RESULTS
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CONCLUSION AND PERSPECTIVE WORK

. Adaptive steplengths make the algorithms more robust then the standard SG methods and provide performances
comparable with SG with best-tuned steplengths [6], [5];

. further study to improve the adaptive steplength rules also in the stochastic case;

. validation of the stochastic-Ritz version: experiments on other database and other loss-functions;

. exploit mini-batch of adaptive size; analyse the sensitivity of the step size rules to the mini-batch size, possible
combination with inexact Line-Search.
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