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STOCHASTIC GRADIENT METHODS
. The problem we consider is the unconstrained minimization of the

form
min
x
F (x) = E[f(x, ξ)]

where ξ is a multi-value random variable and f represents the
cost function. For example: minimize the sum of cost functions
depending on a finite training set, composed by sample data ξi,
i ∈ {1 . . . n}:

min
x
Fn(x) =

1

n

n∑
i=1

f(x, ξi) =
1

n

n∑
i=1

fi(x), (1)

where n is the number of samples and each fi(x) ≡ f(x, ξi) de-
notes the cost function related to the instance ξi of the training set
elements.

. When n is large, computing F (x) and∇F (x) is prohibited;

. Stochastic Gradient (SG) method and its variants have been the main approaches
for solving (1);

. in the t−th iteration of SG, a random index of a training sample it is chosen from
{1, 2, . . . , n} and the iterate xt is updated by

xt+1 = xt − ηt∇fit(xt)

where ∇fit(xt) denotes the gradient of the it-th component function at xt, and
ηt > 0 is the steplength or learning rate, [1].

ADAPTIVE STEPLENGTH SELECTION IN THE STOCHASTIC FRAMEWORK

• The deterministic framework: selections based on the Ritz-like
values [2]
Choose the steplengths for mR next iterations as

ηRt−1+i =
1

θi
, i = 1, . . . ,mR (mR = 3, 4, 5)

where θi are the eigenvalues of an mR×mR symmetric tridiagonal
matrix T derived from the last mR gradients

[∇F (xt−mR
), . . . ,∇F (xt−1)]

by generalizing the Lanczos process for approximating the eigen-
values of a symmetric matrix.
In case of quadratic objective function (F (x) = 1

2x
TAx − btx), the

values θi (called Ritz values) are approximations ofmR eigenvalues
of the symmetric positive definite matrix A.
In the general non-quadratic case, the values θi tend to approxi-
mate mR eigenvalues of the Hessian matrix at the solution [3].

Compute the symmetric tridiagonal matrix T

. Let G = [∇F (xt−mR
), . . . ,∇F (xt−1)] (mR = 3, 4, 5)

. Compute the Cholesky decomposition GT G = RT R
where RmR×mR

is upper triangular

. Compute

J =


η−1
t−mR

−η−1
t−mR

. . .

. . . η−1
t−1

−η−1
t−1


. Compute T̃

T̃ = [R v] J R−1 where RTv = GT∇F (xt)

. T = tril(T) + tril(T,-1)’

• The stochastic framework: Selection based on Ritz-like values in SG

Exploit
G̃ = [∇ft−mR

(xt−mR
), . . . ,∇ft−1(xt−1)]

in computing the Ritz-like values θi for the next mR iterations and set in SGD

ηt = max

{
min

{
ηmax,

1

θi

}
, ηmin

}

THE TEST PROBLEM
• We built linear classifiers corresponding to three

different loss functions (logistic regression, square
loss, smooth hinge loss); in all cases, a regulariza-
tion term was added to avoid overfitting. Thus the
minimization problem has the form

min
x
Fn(x) +

λ

2
‖x‖22,

where λ > 0 is a regularization parameter, ai ∈ Rd
and bi ∈ {1,−1} are the feature vector and the class
label of the i− th sample, respectively;

• The loss function Fn(x) assumes one of the follow-
ing form:

– logistic regression:

Fn(x) =
1

n

n∑
i=1

log
[
1 + e(−bia

T
i x)

]
;

– square loss:

Fn(x) =
1

n

n∑
i=1

(1− biaTi x)2;

– smooth hinge loss:

Fn(x) =
1

n

n∑
i=1


1
2
− biaTi x, if biaTi x ≤ 0

1
2
(1− biaTi x)2, if 0 < bia

T
i x < 1

0, if biaTi x ≥ 1

• We consider the two well known data-sets:

– the MNIST data-set of handwritten digits, the
images are in gray-scale (0, 255), in our case
normalized (0, 1), centered in a box of 28 ×
28 pixels; from the whole data-set of 60, 000
images, 11, 800 images were extracted exclu-
sively relating to digits 8 and 9;

– the web data-set w8a containing 49,749 exam-
ples; each example is described by 300 binary
features.

EXPERIMENTAL RESULTS
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CONCLUSION AND PERSPECTIVE WORK

• The proposed steplength approach depends on the chosen interval [ηmin, ηmax] and on ηini, the effectiveness of the corresponding SG methods is slightly
affected by variations of these parameters;

• This behaviour introduces greater flexibility with respect to the choice of a fixed small scalar, that must be carefully tuned;

• Future works will involve variance reduction methods and its validation on other loss functions;

• Following the suggestions of [Bollapragada et al. 2017], a very interesting analysis will concern the possibility of combining the proposed steplength selection rule

with inexact line search techniques used in SG methods.
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